Submission #355081

# Submission time Handle Problem Language Result Execution time Memory
355081 2021-01-22T08:51:33 Z ryansee Comparing Plants (IOI20_plants) C++14
30 / 100
4000 ms 222940 KB
#include "plants.h"
 
#include "bits/stdc++.h"
using namespace std;
 
#define FAST ios_base::sync_with_stdio(false); cin.tie(0);
#define pb push_back
#define eb emplace_back
#define ins insert
#define f first
#define s second
#define cbr cerr<<"hi\n"
#define mmst(x, v) memset((x), v, sizeof ((x)))
#define siz(x) ll(x.size())
#define all(x) (x).begin(), (x).end()
#define lbd(x,y) (lower_bound(all(x),y)-x.begin())
#define ubd(x,y) (upper_bound(all(x),y)-x.begin())
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());    //can be used by calling rng() or shuffle(A, A+n, rng)
inline long long rand(long long x, long long y) { return rng() % (y+1-x) + x; } //inclusivesss
string inline to_string(char c) {string s(1,c);return s;} template<typename T> inline T gcd(T a,T b){ return a==0?llabs(b):gcd(b%a,a); }
 
using ll=long long; 
using ld=long double;
#define FOR(i,s,e) for(ll i=s;i<=ll(e);++i)
#define DEC(i,s,e) for(ll i=s;i>=ll(e);--i)
using pi=pair<ll,ll>; using spi=pair<ll,pi>; using dpi=pair<pi,pi>; 
 
long long LLINF = 1e18;
int INF = 1e9+1e6;
#define MAXN (200002)
 
int n, start, k;
vector<int> R;
ll A[MAXN*2];
inline ll cy(ll x) {
	x %= n, x += n, x %= n; return x;
}
ll dist(int x,int y) {
	if(x > y) swap(x, y);
	return min(y-x, n-y+x);	
}

struct node {
	int s,e,m;
	spi v;
	ll lazy[3];
	node*l,*r;
	node(int S,int E){
		s=S,e=E,m=(s+e)>>1;
		v=spi(LLINF, pi(0, -1)), mmst(lazy, 0);
		if(s^e)l=new node(s,m),r=new node(m+1,e),v=min(l->v,r->v);
		else v=spi(R[s], pi(0, s));
	}
	void value() {
		v.f += lazy[0], v.s.f += lazy[1];
		if(s^e) FOR(i,0,1) l->lazy[i]+=lazy[i], r->lazy[i]+=lazy[i];
		lazy[0]=lazy[1]=0;
	}
	void update(int x,int y,pi nval) {
		if(s==x&&e==y) {
			if(nval.s <= 1) lazy[nval.s] += nval.f;
			else lazy[nval.s] = max(lazy[nval.s], nval.f);
			return;
		}
		if(x>m) r->update(x,y,nval);
		else if(y<=m) l->update(x,y,nval);
		else l->update(x,m,nval),r->update(m+1,y,nval);
		l->value(), r->value();
		v=min(l->v,r->v);
	}
	spi rmq(int x,int y) {
		value();
		if(s==x&&e==y) return v;
		if(x>m) return r->rmq(x,y);
		else if(y<=m) return l->rmq(x,y);
		else return min(l->rmq(x,m),r->rmq(m+1,y));
	}
	void set(int x,ll add=0) {
		value();
		add = max(add, lazy[2]);
		if(s==e) {
			A[s] = add;
			v = spi(LLINF, pi(0, -1));
			return;
		}
		if(x>m) r->set(x, add);
		else l->set(x, add);
		l->value(), r->value();
		v = min(l->v, r->v);
	}
} *seg;
void update(int x,int y,pi nval) {
	x=cy(x), y=cy(y);
	if(x<=y) seg->update(x,y,nval);
	else seg->update(x,n-1,nval), seg->update(0,y,nval);
}
spi rmq(int x,int y) {
	x=cy(x), y=cy(y);
	if(x<=y) return seg->rmq(x, y);
	else return min(seg->rmq(x, n-1), seg->rmq(0, y));
}
struct node2 {
	int s,e,m;
	array<pi, 2> v;
	node2*l,*r;
	node2(int S,int E){
		s=S,e=E,m=(s+e)>>1;
		v = {pi(INF, -1), pi(-INF, -1)};
		if(s^e)l=new node2(s,m),r=new node2(m+1,e);
	}
	array<pi, 2> comb(array<pi, 2> x,array<pi, 2> y) {
		return array<pi, 2> {min(x[0], y[0]), max(x[1], y[1])};
	}
	array<pi, 2> rmq(int x,int y) {
		if(s==x&&e==y) return v;
		if(x>m) return r->rmq(x, y);
		else if(y<=m) return l->rmq(x, y);
		else return comb(l->rmq(x, m), r->rmq(m+1, y));
	}
	ll mx(int x,int y) {
		if(x <= y) return rmq(x, y)[1].s;
		else assert(0);
	}
	ll mi(int x,int y) {
		if(x <= y) return rmq(x, y)[0].s;
		else assert(0);
	}
	void set(int x) {
		if(s==e) {
			v = {pi(A[s], s), pi(A[s], s)};
			return;
		}
		if(x>m) r->set(x);
		else l->set(x);
		v = comb(l->v, r->v);
	}
} *seg2;
struct tree {
	int st[MAXN*2], en[MAXN*2];
	bitset<MAXN*2> r;
	vector<int> v[MAXN*2];
	tree() {
		mmst(st, 0), mmst(en, 0), r.set();
	}
	void add(int x,int y) {
		if(y==-1||x==y) return;
		r[x]=0, v[y].eb(x);
	}
	void solve() {
		ll co=1;
		function<void(ll)>dfs=[&](int x) {
			st[x]=co++;
			for(auto i:v[x]) dfs(i);
			en[x]=co-1;
		};
		FOR(i,0,2*n-1) if(r[i]) dfs(i);
	}
	bool isp(int a,int b) { return st[a]<=st[b]&&en[a]>=en[b]; }
} t[2];
void init(int K, std::vector<int> r) { k=K, R=r;
	n=r.size();
	seg=new node(0, n-1);
	FOR(i,0,n-1) if(r[i]==0) update(i+1, i+k-1, pi(1, 1));
	while(1) {
		start = seg->rmq(0, n-1).s.s;
		if(start == -1) break;
		seg->set(start);
		update(start+1, start+k-1, pi(A[start]+1, 2));
		update(start+1, start+k-1, pi(-1, 1));
		update(start-k+1, start-1, pi(A[start]+1, 2));
		update(start-k+1, start-1, pi(-1, 0));
		vector<int> tmp;
		while(1) {
			spi x = rmq(start-k+1, start-1);
			if(x.f == 0) {
				tmp.eb(x.s.s);
				update(x.s.s+1, x.s.s+k-1, pi(1, 1));
				update(x.s.s, x.s.s, pi(1, 0));
			} else break;
		}
		for(auto i:tmp) update(i, i, pi(-1, 0));
	}
	/* dp[0][0]=dp[1][0]=1;
	FOR(i,0,1) fw[i].update(A[0], 1);
	FOR(i,1,n-1) {
		// FOR(jj,i-k+1,i-1) { int j=cy(jj);
			// assert(A[i] ^ A[j]);
			// if(A[i] < A[j]) dp[0][i] |= dp[0][j];
			// else dp[1][i] |= dp[1][j];
		// }
		if(i >= k) FOR(j,0,1) if(dp[j][i-k]) fw[j].update(A[i-k], -1);
		dp[0][i] = fw[0].sum(A[i]+1, MAXN-2) > 0;
		dp[1][i] = fw[1].sum(0, A[i]-1) > 0;
		FOR(j,0,1) if(dp[j][i]) fw[j].update(A[i], 1);
	}
	fw[0]=fen(), fw[1]=fen();
	dp2[0][0]=dp2[1][0]=1;
	FOR(i,0,1) fw[i].update(A[0], 1);
	DEC(ii,-1,-n+1) { int i=cy(ii);
		// FOR(jj,i+1,i+k-1) { int j=cy(jj);
			// assert(A[i] ^ A[j]);
			// if(A[i] < A[j]) dp2[0][i] |= dp2[0][j];
			// else dp2[1][i] |= dp2[1][j];
		// }
		int t = cy(i + k);
		if(t > i || t == 0) {
			FOR(j,0,1) if(dp2[j][t]) fw[j].update(A[t], -1);
		}
		dp2[0][i] = fw[0].sum(A[i]+1, MAXN-2) > 0;
		dp2[1][i] = fw[1].sum(0, A[i]-1) > 0;
		FOR(j,0,1) if(dp2[j][i]) fw[j].update(A[i], 1);
	} */
	
	vector<int> p;
	FOR(i,0,n-1) p.eb(i), p.eb(i+n), A[i+n]=A[i];
	sort(all(p), [](int x,int y){return A[x]<A[y];});
	seg2=new node2(0, 2*n-1);
	for(auto i:p) {
		int target = seg2->mx(i, min(2*n-1, i+k-1)); // connect to shortest tower within k that is taller than you
		t[0].add(i, target);
		seg2->set(i);
	}
	
	sort(all(p), [](int x,int y){return A[x]>A[y];});
	seg2=new node2(0, 2*n-1);
	for(auto i:p) {
		int target = seg2->mi(i, min(2*n-1, i+k-1));
		t[1].add(i, target);
		seg2->set(i);
	}
	// FOR(i,0,n-1) {
		// int target = seg2->mi(i, i-k+1);
		// t[2].add(i, target);
	// }
	// FOR(i,0,n-1) {
		// int target = seg2->mx(i, i-k+1);
		// t[3].add(i, target);
	// }
	FOR(i,0,1) t[i].solve();
}
int compare_plants(int x, int y) {
	/* if(x == 0) {
		if(dp[0][y] || dp2[0][y]) return -1;
		else if(dp[1][y] || dp2[1][y]) return 1;
		else return 0;
	}
	if(n > 300 || reach[x][y] || reach[y][x]) return A[x] < A[y] ? 1 : -1;
	else return 0; */
	
	if(dist(x, y) < k) {
		return A[x] < A[y] ? 1 : -1;
	}
	
	FOR(i,y,y+k-1) {
		if(A[y] <= A[i]) {
			if(t[0].isp(i, x)) { if(0) assert(A[i] < A[x]); return -1; }
		}
	}
	FOR(i,y,y+k-1) {
		if(A[y] >= A[i]) {
			if(t[1].isp(i, x)) { if(0) assert(A[x] < A[i]); return 1; }
		}
	}
	swap(x, y);
	y += n;
	FOR(i,y,min(2*n-1, y+k-1)) {
		if(A[y] <= A[i]) {
			if(t[0].isp(i, x)) { if(0) assert(A[i] < A[x]); return 1; }
		}
	}
	FOR(i,y,min(2*n-1, y+k-1)) {
		if(A[y] >= A[i]) {
			if(t[1].isp(i, x)) { if(0) assert(A[x] < A[i]); return -1; }
		}
	}
	
	return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 16 ms 25452 KB Output is correct
2 Correct 17 ms 25452 KB Output is correct
3 Correct 16 ms 25452 KB Output is correct
4 Correct 16 ms 25452 KB Output is correct
5 Correct 16 ms 25452 KB Output is correct
6 Correct 79 ms 28268 KB Output is correct
7 Correct 224 ms 46416 KB Output is correct
8 Correct 1847 ms 210268 KB Output is correct
9 Correct 1938 ms 210260 KB Output is correct
10 Correct 1592 ms 210652 KB Output is correct
11 Correct 1412 ms 212416 KB Output is correct
12 Correct 1294 ms 216672 KB Output is correct
13 Correct 1108 ms 222940 KB Output is correct
14 Correct 1319 ms 222812 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 17 ms 25452 KB Output is correct
2 Correct 17 ms 25452 KB Output is correct
3 Correct 17 ms 25452 KB Output is correct
4 Correct 16 ms 25452 KB Output is correct
5 Correct 17 ms 25580 KB Output is correct
6 Correct 26 ms 26476 KB Output is correct
7 Correct 134 ms 33004 KB Output is correct
8 Correct 18 ms 25580 KB Output is correct
9 Correct 27 ms 26476 KB Output is correct
10 Correct 138 ms 33004 KB Output is correct
11 Correct 111 ms 33132 KB Output is correct
12 Correct 116 ms 33388 KB Output is correct
13 Correct 124 ms 33004 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 17 ms 25452 KB Output is correct
2 Correct 17 ms 25452 KB Output is correct
3 Correct 17 ms 25452 KB Output is correct
4 Correct 16 ms 25452 KB Output is correct
5 Correct 17 ms 25580 KB Output is correct
6 Correct 26 ms 26476 KB Output is correct
7 Correct 134 ms 33004 KB Output is correct
8 Correct 18 ms 25580 KB Output is correct
9 Correct 27 ms 26476 KB Output is correct
10 Correct 138 ms 33004 KB Output is correct
11 Correct 111 ms 33132 KB Output is correct
12 Correct 116 ms 33388 KB Output is correct
13 Correct 124 ms 33004 KB Output is correct
14 Correct 354 ms 46964 KB Output is correct
15 Execution timed out 4094 ms 211808 KB Time limit exceeded
16 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 17 ms 25452 KB Output is correct
2 Correct 18 ms 25452 KB Output is correct
3 Correct 98 ms 30316 KB Output is correct
4 Correct 1588 ms 217580 KB Output is correct
5 Correct 2415 ms 217244 KB Output is correct
6 Execution timed out 4056 ms 216688 KB Time limit exceeded
7 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 17 ms 25452 KB Output is correct
2 Correct 17 ms 25452 KB Output is correct
3 Correct 18 ms 25452 KB Output is correct
4 Correct 16 ms 25580 KB Output is correct
5 Correct 16 ms 25452 KB Output is correct
6 Correct 19 ms 25580 KB Output is correct
7 Correct 38 ms 26348 KB Output is correct
8 Correct 37 ms 26348 KB Output is correct
9 Correct 35 ms 26348 KB Output is correct
10 Correct 38 ms 26348 KB Output is correct
11 Correct 37 ms 26348 KB Output is correct
12 Correct 39 ms 26348 KB Output is correct
13 Correct 32 ms 26348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 16 ms 25452 KB Output is correct
2 Correct 18 ms 25452 KB Output is correct
3 Correct 19 ms 25452 KB Output is correct
4 Correct 18 ms 25580 KB Output is correct
5 Correct 26 ms 26476 KB Output is correct
6 Correct 3372 ms 215116 KB Output is correct
7 Execution timed out 4093 ms 215260 KB Time limit exceeded
8 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 16 ms 25452 KB Output is correct
2 Correct 17 ms 25452 KB Output is correct
3 Correct 16 ms 25452 KB Output is correct
4 Correct 16 ms 25452 KB Output is correct
5 Correct 16 ms 25452 KB Output is correct
6 Correct 79 ms 28268 KB Output is correct
7 Correct 224 ms 46416 KB Output is correct
8 Correct 1847 ms 210268 KB Output is correct
9 Correct 1938 ms 210260 KB Output is correct
10 Correct 1592 ms 210652 KB Output is correct
11 Correct 1412 ms 212416 KB Output is correct
12 Correct 1294 ms 216672 KB Output is correct
13 Correct 1108 ms 222940 KB Output is correct
14 Correct 1319 ms 222812 KB Output is correct
15 Correct 17 ms 25452 KB Output is correct
16 Correct 17 ms 25452 KB Output is correct
17 Correct 17 ms 25452 KB Output is correct
18 Correct 16 ms 25452 KB Output is correct
19 Correct 17 ms 25580 KB Output is correct
20 Correct 26 ms 26476 KB Output is correct
21 Correct 134 ms 33004 KB Output is correct
22 Correct 18 ms 25580 KB Output is correct
23 Correct 27 ms 26476 KB Output is correct
24 Correct 138 ms 33004 KB Output is correct
25 Correct 111 ms 33132 KB Output is correct
26 Correct 116 ms 33388 KB Output is correct
27 Correct 124 ms 33004 KB Output is correct
28 Correct 354 ms 46964 KB Output is correct
29 Execution timed out 4094 ms 211808 KB Time limit exceeded
30 Halted 0 ms 0 KB -