Submission #354988

# Submission time Handle Problem Language Result Execution time Memory
354988 2021-01-22T07:58:53 Z ryansee Comparing Plants (IOI20_plants) C++14
32 / 100
3705 ms 145232 KB
#include "plants.h"
 
#include "bits/stdc++.h"
using namespace std;
 
#define FAST ios_base::sync_with_stdio(false); cin.tie(0);
#define pb push_back
#define eb emplace_back
#define ins insert
#define f first
#define s second
#define cbr cerr<<"hi\n"
#define mmst(x, v) memset((x), v, sizeof ((x)))
#define siz(x) ll(x.size())
#define all(x) (x).begin(), (x).end()
#define lbd(x,y) (lower_bound(all(x),y)-x.begin())
#define ubd(x,y) (upper_bound(all(x),y)-x.begin())
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());    //can be used by calling rng() or shuffle(A, A+n, rng)
inline long long rand(long long x, long long y) { return rng() % (y+1-x) + x; } //inclusivesss
string inline to_string(char c) {string s(1,c);return s;} template<typename T> inline T gcd(T a,T b){ return a==0?llabs(b):gcd(b%a,a); }
 
using ll=long long; 
using ld=long double;
#define FOR(i,s,e) for(ll i=s;i<=ll(e);++i)
#define DEC(i,s,e) for(ll i=s;i>=ll(e);--i)
using pi=pair<ll,ll>; using spi=pair<ll,pi>; using dpi=pair<pi,pi>; 
 
long long LLINF = 1e18;
int INF = 1e9+1e6;
#define MAXN (200002)
 
int n, start, k;
vector<int> R;
ll A[MAXN];
inline ll cy(ll x) {
	x %= n, x += n, x %= n; return x;
}
ll dist(int x,int y) {
	if(x > y) swap(x, y);
	return min(y-x, n-y+x);	
}

struct node {
	int s,e,m;
	spi v;
	ll lazy[3];
	node*l,*r;
	node(int S,int E){
		s=S,e=E,m=(s+e)>>1;
		v=spi(LLINF, pi(0, -1)), mmst(lazy, 0);
		if(s^e)l=new node(s,m),r=new node(m+1,e),v=min(l->v,r->v);
		else v=spi(R[s], pi(0, s));
	}
	void value() {
		v.f += lazy[0], v.s.f += lazy[1];
		if(s^e) FOR(i,0,1) l->lazy[i]+=lazy[i], r->lazy[i]+=lazy[i];
		lazy[0]=lazy[1]=0;
	}
	void update(int x,int y,pi nval) {
		if(s==x&&e==y) {
			if(nval.s <= 1) lazy[nval.s] += nval.f;
			else lazy[nval.s] = max(lazy[nval.s], nval.f);
			return;
		}
		if(x>m) r->update(x,y,nval);
		else if(y<=m) l->update(x,y,nval);
		else l->update(x,m,nval),r->update(m+1,y,nval);
		l->value(), r->value();
		v=min(l->v,r->v);
	}
	spi rmq(int x,int y) {
		value();
		if(s==x&&e==y) return v;
		if(x>m) return r->rmq(x,y);
		else if(y<=m) return l->rmq(x,y);
		else return min(l->rmq(x,m),r->rmq(m+1,y));
	}
	void set(int x,ll add=0) {
		value();
		add = max(add, lazy[2]);
		if(s==e) {
			A[s] = add;
			v = spi(LLINF, pi(0, -1));
			return;
		}
		if(x>m) r->set(x, add);
		else l->set(x, add);
		l->value(), r->value();
		v = min(l->v, r->v);
	}
} *seg;
void update(int x,int y,pi nval) {
	x=cy(x), y=cy(y);
	if(x<=y) seg->update(x,y,nval);
	else seg->update(x,n-1,nval), seg->update(0,y,nval);
}
spi rmq(int x,int y) {
	x=cy(x), y=cy(y);
	if(x<=y) return seg->rmq(x, y);
	else return min(seg->rmq(x, n-1), seg->rmq(0, y));
}
struct node2 {
	int s,e,m;
	array<pi, 2> v;
	node2*l,*r;
	node2(int S,int E){
		s=S,e=E,m=(s+e)>>1;
		v = {pi(INF, -1), pi(-INF, -1)};
		if(s^e)l=new node2(s,m),r=new node2(m+1,e);
	}
	array<pi, 2> comb(array<pi, 2> x,array<pi, 2> y) {
		return array<pi, 2> {min(x[0], y[0]), max(x[1], y[1])};
	}
	array<pi, 2> rmq(int x,int y) {
		if(s==x&&e==y) return v;
		if(x>m) return r->rmq(x, y);
		else if(y<=m) return l->rmq(x, y);
		else return comb(l->rmq(x, m), r->rmq(m+1, y));
	}
	ll mx(int x,int y) {
		x = cy(x), y = cy(y);
		if(x <= y) return rmq(x, y)[1].s;
		else return max(rmq(x, n-1)[1], rmq(0, y)[1]).s;
	}
	ll mi(int x,int y) {
		x = cy(x), y = cy(y);
		if(x <= y) return rmq(x, y)[0].s;
		else return min(rmq(x, n-1)[0], rmq(0, y)[0]).s;
	}
	void set(int x) {
		if(s==e) {
			v = {pi(A[s], s), pi(A[s], s)};
			return;
		}
		if(x>m) r->set(x);
		else l->set(x);
		v = comb(l->v, r->v);
	}
} *seg2;
struct tree {
	int st[MAXN], en[MAXN];
	bitset<MAXN> r;
	vector<int> v[MAXN];
	tree() {
		mmst(st, 0), mmst(en, 0), r.set();
		for(auto&i:v) assert(i.empty());
	}
	void add(int x,int y) {
		if(y==-1||x==y) return;
		r[x]=0, v[y].eb(x);
	}
	void solve() {
		ll co=1;
		function<void(ll)>dfs=[&](int x) {
			st[x]=co++;
			for(auto i:v[x]) dfs(i);
			en[x]=co-1;
		};
		FOR(i,0,n-1) if(r[i]) dfs(i);
	}
	bool isp(int a,int b) { return st[a]<=st[b]&&en[a]>=en[b]; }
} t[2];
void init(int K, std::vector<int> r) { k=K, R=r;
	n=r.size();
	seg=new node(0, n-1);
	FOR(i,0,n-1) if(r[i]==0) update(i+1, i+k-1, pi(1, 1));
	while(1) {
		start = seg->rmq(0, n-1).s.s;
		if(start == -1) break;
		seg->set(start);
		update(start+1, start+k-1, pi(A[start]+1, 2));
		update(start+1, start+k-1, pi(-1, 1));
		update(start-k+1, start-1, pi(A[start]+1, 2));
		update(start-k+1, start-1, pi(-1, 0));
		vector<int> tmp;
		while(1) {
			spi x = rmq(start-k+1, start-1);
			if(x.f == 0) {
				tmp.eb(x.s.s);
				update(x.s.s+1, x.s.s+k-1, pi(1, 1));
				update(x.s.s, x.s.s, pi(1, 0));
			} else break;
		}
		for(auto i:tmp) update(i, i, pi(-1, 0));
	}
	/* dp[0][0]=dp[1][0]=1;
	FOR(i,0,1) fw[i].update(A[0], 1);
	FOR(i,1,n-1) {
		// FOR(jj,i-k+1,i-1) { int j=cy(jj);
			// assert(A[i] ^ A[j]);
			// if(A[i] < A[j]) dp[0][i] |= dp[0][j];
			// else dp[1][i] |= dp[1][j];
		// }
		if(i >= k) FOR(j,0,1) if(dp[j][i-k]) fw[j].update(A[i-k], -1);
		dp[0][i] = fw[0].sum(A[i]+1, MAXN-2) > 0;
		dp[1][i] = fw[1].sum(0, A[i]-1) > 0;
		FOR(j,0,1) if(dp[j][i]) fw[j].update(A[i], 1);
	}
	fw[0]=fen(), fw[1]=fen();
	dp2[0][0]=dp2[1][0]=1;
	FOR(i,0,1) fw[i].update(A[0], 1);
	DEC(ii,-1,-n+1) { int i=cy(ii);
		// FOR(jj,i+1,i+k-1) { int j=cy(jj);
			// assert(A[i] ^ A[j]);
			// if(A[i] < A[j]) dp2[0][i] |= dp2[0][j];
			// else dp2[1][i] |= dp2[1][j];
		// }
		int t = cy(i + k);
		if(t > i || t == 0) {
			FOR(j,0,1) if(dp2[j][t]) fw[j].update(A[t], -1);
		}
		dp2[0][i] = fw[0].sum(A[i]+1, MAXN-2) > 0;
		dp2[1][i] = fw[1].sum(0, A[i]-1) > 0;
		FOR(j,0,1) if(dp2[j][i]) fw[j].update(A[i], 1);
	} */
	
	vector<int> p;
	FOR(i,0,n-1) p.eb(i);
	sort(all(p), [](int x,int y){return A[x]<A[y];});
	seg2=new node2(0, n-1);
	for(auto i:p) {
		int target = seg2->mx(i, i+k-1); // connect to shortest tower within k that is taller than you
		t[0].add(i, target);
		seg2->set(i);
	}
	
	sort(all(p), [](int x,int y){return A[x]>A[y];});
	seg2=new node2(0, n-1);
	for(auto i:p) {
		int target = seg2->mi(i, i+k-1);
		t[1].add(i, target);
		seg2->set(i);
	}
	// FOR(i,0,n-1) {
		// int target = seg2->mi(i, i-k+1);
		// t[2].add(i, target);
	// }
	// FOR(i,0,n-1) {
		// int target = seg2->mx(i, i-k+1);
		// t[3].add(i, target);
	// }
	FOR(i,0,1) t[i].solve();
}
int compare_plants(int x, int y) {
	/* if(x == 0) {
		if(dp[0][y] || dp2[0][y]) return -1;
		else if(dp[1][y] || dp2[1][y]) return 1;
		else return 0;
	}
	if(n > 300 || reach[x][y] || reach[y][x]) return A[x] < A[y] ? 1 : -1;
	else return 0; */
	
	if(dist(x, y) < k) {
		return A[x] < A[y] ? 1 : -1;
	}
	
	if(t[0].isp(y, x)) { assert(A[y] < A[x]); return -1; }
	if(t[1].isp(y, x)) { assert(A[x] < A[y]); return 1; }
	if(t[0].isp(x, y)) { assert(A[x] < A[y]); return 1; }
	if(t[1].isp(x, y)) { assert(A[y] < A[x]); return -1; }
	return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 10 ms 12908 KB Output is correct
2 Correct 9 ms 12908 KB Output is correct
3 Correct 9 ms 12908 KB Output is correct
4 Correct 9 ms 12908 KB Output is correct
5 Correct 9 ms 12908 KB Output is correct
6 Correct 71 ms 15724 KB Output is correct
7 Correct 172 ms 26988 KB Output is correct
8 Correct 1316 ms 126424 KB Output is correct
9 Correct 1270 ms 126476 KB Output is correct
10 Correct 1193 ms 126760 KB Output is correct
11 Correct 1061 ms 128572 KB Output is correct
12 Correct 1032 ms 133024 KB Output is correct
13 Correct 919 ms 138876 KB Output is correct
14 Correct 1137 ms 138988 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 9 ms 12908 KB Output is correct
2 Correct 9 ms 12908 KB Output is correct
3 Correct 9 ms 12908 KB Output is correct
4 Correct 9 ms 12908 KB Output is correct
5 Correct 10 ms 12908 KB Output is correct
6 Correct 18 ms 13548 KB Output is correct
7 Correct 115 ms 18924 KB Output is correct
8 Correct 11 ms 13036 KB Output is correct
9 Correct 18 ms 13548 KB Output is correct
10 Correct 116 ms 18924 KB Output is correct
11 Correct 98 ms 18796 KB Output is correct
12 Correct 100 ms 19052 KB Output is correct
13 Correct 121 ms 19052 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 9 ms 12908 KB Output is correct
2 Correct 9 ms 12908 KB Output is correct
3 Correct 9 ms 12908 KB Output is correct
4 Correct 9 ms 12908 KB Output is correct
5 Correct 10 ms 12908 KB Output is correct
6 Correct 18 ms 13548 KB Output is correct
7 Correct 115 ms 18924 KB Output is correct
8 Correct 11 ms 13036 KB Output is correct
9 Correct 18 ms 13548 KB Output is correct
10 Correct 116 ms 18924 KB Output is correct
11 Correct 98 ms 18796 KB Output is correct
12 Correct 100 ms 19052 KB Output is correct
13 Correct 121 ms 19052 KB Output is correct
14 Correct 306 ms 27756 KB Output is correct
15 Correct 3705 ms 136912 KB Output is correct
16 Correct 400 ms 27884 KB Output is correct
17 Correct 3578 ms 137440 KB Output is correct
18 Correct 1751 ms 142064 KB Output is correct
19 Correct 1891 ms 142140 KB Output is correct
20 Correct 2940 ms 145232 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 9 ms 12908 KB Output is correct
2 Correct 9 ms 12908 KB Output is correct
3 Incorrect 84 ms 16876 KB Output isn't correct
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 9 ms 12908 KB Output is correct
2 Correct 9 ms 12908 KB Output is correct
3 Correct 9 ms 12908 KB Output is correct
4 Correct 9 ms 12908 KB Output is correct
5 Incorrect 9 ms 12908 KB Output isn't correct
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 9 ms 13056 KB Output is correct
2 Correct 9 ms 12908 KB Output is correct
3 Correct 9 ms 12908 KB Output is correct
4 Correct 9 ms 12908 KB Output is correct
5 Incorrect 16 ms 13420 KB Output isn't correct
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 10 ms 12908 KB Output is correct
2 Correct 9 ms 12908 KB Output is correct
3 Correct 9 ms 12908 KB Output is correct
4 Correct 9 ms 12908 KB Output is correct
5 Correct 9 ms 12908 KB Output is correct
6 Correct 71 ms 15724 KB Output is correct
7 Correct 172 ms 26988 KB Output is correct
8 Correct 1316 ms 126424 KB Output is correct
9 Correct 1270 ms 126476 KB Output is correct
10 Correct 1193 ms 126760 KB Output is correct
11 Correct 1061 ms 128572 KB Output is correct
12 Correct 1032 ms 133024 KB Output is correct
13 Correct 919 ms 138876 KB Output is correct
14 Correct 1137 ms 138988 KB Output is correct
15 Correct 9 ms 12908 KB Output is correct
16 Correct 9 ms 12908 KB Output is correct
17 Correct 9 ms 12908 KB Output is correct
18 Correct 9 ms 12908 KB Output is correct
19 Correct 10 ms 12908 KB Output is correct
20 Correct 18 ms 13548 KB Output is correct
21 Correct 115 ms 18924 KB Output is correct
22 Correct 11 ms 13036 KB Output is correct
23 Correct 18 ms 13548 KB Output is correct
24 Correct 116 ms 18924 KB Output is correct
25 Correct 98 ms 18796 KB Output is correct
26 Correct 100 ms 19052 KB Output is correct
27 Correct 121 ms 19052 KB Output is correct
28 Correct 306 ms 27756 KB Output is correct
29 Correct 3705 ms 136912 KB Output is correct
30 Correct 400 ms 27884 KB Output is correct
31 Correct 3578 ms 137440 KB Output is correct
32 Correct 1751 ms 142064 KB Output is correct
33 Correct 1891 ms 142140 KB Output is correct
34 Correct 2940 ms 145232 KB Output is correct
35 Correct 9 ms 12908 KB Output is correct
36 Correct 9 ms 12908 KB Output is correct
37 Incorrect 84 ms 16876 KB Output isn't correct
38 Halted 0 ms 0 KB -