Submission #354343

# Submission time Handle Problem Language Result Execution time Memory
354343 2021-01-21T18:53:04 Z ryansee Comparing Plants (IOI20_plants) C++14
27 / 100
2693 ms 53684 KB
#include "plants.h"
 
#include "bits/stdc++.h"
using namespace std;
 
#define FAST ios_base::sync_with_stdio(false); cin.tie(0);
#define pb push_back
#define eb emplace_back
#define ins insert
#define f first
#define s second
#define cbr cerr<<"hi\n"
#define mmst(x, v) memset((x), v, sizeof ((x)))
#define siz(x) ll(x.size())
#define all(x) (x).begin(), (x).end()
#define lbd(x,y) (lower_bound(all(x),y)-x.begin())
#define ubd(x,y) (upper_bound(all(x),y)-x.begin())
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());    //can be used by calling rng() or shuffle(A, A+n, rng)
inline long long rand(long long x, long long y) { return rng() % (y+1-x) + x; } //inclusivesss
string inline to_string(char c) {string s(1,c);return s;} template<typename T> inline T gcd(T a,T b){ return a==0?llabs(b):gcd(b%a,a); }
 
using ll=long long; 
using ld=long double;
#define FOR(i,s,e) for(ll i=s;i<=ll(e);++i)
#define DEC(i,s,e) for(ll i=s;i>=ll(e);--i)
using pi=pair<ll,ll>; using spi=pair<ll,pi>; using dpi=pair<pi,pi>; 
 
long long LLINF = 1e18;
int INF = 1e9+1e6;
#define MAXN (200002)
 
int n, start, k;
vector<int> R;
ll A[MAXN];
int dp[2][MAXN], dp2[2][MAXN];
inline ll cy(ll x) {
	x %= n, x += n, x %= n; return x;
}
vector<int> v[306];
bitset<306> reach[306];
ll dist(int x,int y) {
	if(x > y) swap(x, y);
	return min(y-x, n-y+x);	
}

struct node {
	int s,e,m;
	spi v;
	ll lazy[3];
	node*l,*r;
	node(int S,int E){
		s=S,e=E,m=(s+e)>>1;
		v=spi(LLINF, pi(0, -1)), mmst(lazy, 0);
		if(s^e)l=new node(s,m),r=new node(m+1,e),v=min(l->v,r->v);
		else v=spi(R[s], pi(0, s));
	}
	void value() {
		v.f += lazy[0], v.s.f += lazy[1];
		if(s^e) FOR(i,0,1) l->lazy[i]+=lazy[i], r->lazy[i]+=lazy[i];
		lazy[0]=lazy[1]=0;
	}
	void update(int x,int y,pi nval) {
		if(s==x&&e==y) {
			if(nval.s <= 1) lazy[nval.s] += nval.f;
			else lazy[nval.s] = max(lazy[nval.s], nval.f);
			return;
		}
		if(x>m) r->update(x,y,nval);
		else if(y<=m) l->update(x,y,nval);
		else l->update(x,m,nval),r->update(m+1,y,nval);
		l->value(), r->value();
		v=min(l->v,r->v);
	}
	spi rmq(int x,int y) {
		value();
		if(s==x&&e==y) return v;
		if(x>m) return r->rmq(x,y);
		else if(y<=m) return l->rmq(x,y);
		else return min(l->rmq(x,m),r->rmq(m+1,y));
	}
	void set(int x,ll add=0) {
		value();
		add = max(add, lazy[2]);
		if(s==e) {
			A[s] = add;
			v = spi(LLINF, pi(0, -1));
			return;
		}
		if(x>m) r->set(x, add);
		else l->set(x, add);
		l->value(), r->value();
		v = min(l->v, r->v);
	}
} *seg;
void update(int x,int y,pi nval) {
	x=cy(x), y=cy(y);
	if(x<=y) seg->update(x,y,nval);
	else seg->update(x,n-1,nval), seg->update(0,y,nval);
}
spi rmq(int x,int y) {
	x=cy(x), y=cy(y);
	if(x<=y) return seg->rmq(x, y);
	else return min(seg->rmq(x, n-1), seg->rmq(0, y));
}
struct fen {
	ll fw[MAXN];
	fen() { mmst(fw, 0); }
	void update(int x,ll nval) {
		++ x;
		for(;x<MAXN;x+=x&(-x)) fw[x]+=nval;
	}
	ll sum(int x) {
		++ x;
		ll res=0;
		for(;x;x-=x&(-x)) res+=fw[x];
		return res;
	}
	ll sum(int a,int b) { return sum(b) - sum(a-1); }
} fw[2];
void init(int K, std::vector<int> r) { k=K, R=r;
	n=r.size();
	seg=new node(0, n-1);
	FOR(i,0,n-1) if(r[i]==0) update(i+1, i+k-1, pi(1, 1));
	while(1) {
		start = -1;
		// FOR(i,0,n-1) if(!gone[i] && r[i] == 0) {
			// DEC(jj,i-1,i-k+1) {
				// int j = (jj + n) % n;
				// if(!gone[j] && r[j] == 0) goto no;
			// }
			// start = i;
			// break;
			// no:;
		// }
		start = seg->rmq(0, n-1).s.s;
		if(start == -1) break;
		// gone[start] = 1;
		seg->set(start);
		// FOR(i,start+1,start+k-1) if(!gone[i%n]) {
			// A[i%n]=max(A[i%n], A[start]+1);
		// }
		update(start+1, start+k-1, pi(A[start]+1, 2));
		update(start+1, start+k-1, pi(-1, 1));
		// FOR(i,start-k+1,start-1) if(!gone[(i+n)%n]) {
			// A[(i+n)%n] = max(A[(i+n)%n], A[start]+1), -- r[(i+n)%n];
		// }
		update(start-k+1, start-1, pi(A[start]+1, 2));
		update(start-k+1, start-1, pi(-1, 0));
		vector<int> tmp;
		while(1) {
			spi x = rmq(start-k+1, start-1);
			if(x.f == 0) {
				tmp.eb(x.s.s);
				update(x.s.s+1, x.s.s+k-1, pi(1, 1));
				update(x.s.s, x.s.s, pi(1, 0));
			} else break;
		}
		for(auto i:tmp) update(i, i, pi(-1, 0));
	}
	// FOR(i,0,n-1) assert(r[i]==0);
	
	if(n <= 300) {
		FOR(i,0,n-1) {
			FOR(jj,i+1,i+k-1) { int j=cy(jj);
				if(A[i] > A[j]) {
					v[i].eb(j);
				} else {
					v[j].eb(i);
				}
			}
		}
		function<void(ll,ll)>dfs=[&](ll x,ll o){
			if(reach[o][x]) return;
			reach[o][x]=1;
			for(auto i:v[x]) dfs(i, o);
		};
		FOR(i,0,n-1) dfs(i, i);
	}
	dp[0][0]=dp[1][0]=1;
	FOR(i,0,1) fw[i].update(A[0], 1);
	FOR(i,1,n-1) {
		// FOR(jj,i-k+1,i-1) { int j=cy(jj);
			// assert(A[i] ^ A[j]);
			// if(A[i] < A[j]) dp[0][i] |= dp[0][j];
			// else dp[1][i] |= dp[1][j];
		// }
		if(i >= k) FOR(j,0,1) if(dp[j][i-k]) fw[j].update(A[i-k], -1);
		dp[0][i] = fw[0].sum(A[i]+1, MAXN-2) > 0;
		dp[1][i] = fw[1].sum(0, A[i]-1) > 0;
		FOR(j,0,1) if(dp[j][i]) fw[j].update(A[i], 1);
	}
	fw[0]=fen(), fw[1]=fen();
	dp2[0][0]=dp2[1][0]=1;
	FOR(i,0,1) fw[i].update(A[0], 1);
	DEC(ii,-1,-n+1) { int i=cy(ii);
		// FOR(jj,i+1,i+k-1) { int j=cy(jj);
			// assert(A[i] ^ A[j]);
			// if(A[i] < A[j]) dp2[0][i] |= dp2[0][j];
			// else dp2[1][i] |= dp2[1][j];
		// }
		int t = cy(i + k);
		if(t > i || t == 0) {
			FOR(j,0,1) if(dp[j][t]) fw[j].update(A[t], -1);
		}
		dp2[0][i] = fw[0].sum(A[i]+1, MAXN-2) > 0;
		dp2[1][i] = fw[1].sum(0, A[i]-1) > 0;
		FOR(j,0,1) if(dp[j][i]) fw[j].update(A[i], 1);
	}
}
int compare_plants(int x, int y) {
	if(x == 0) {
		if(dp[0][y] || dp2[0][y]) return -1;
		else if(dp[1][y] || dp2[1][y]) return 1;
		else return 0;
	}
	if(n > 300 || reach[x][y] || reach[y][x]) return A[x] < A[y] ? 1 : -1;
	else return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 4 ms 6636 KB Output is correct
2 Correct 4 ms 6636 KB Output is correct
3 Correct 4 ms 6636 KB Output is correct
4 Correct 4 ms 6636 KB Output is correct
5 Correct 4 ms 6636 KB Output is correct
6 Incorrect 64 ms 9452 KB Output isn't correct
7 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 4 ms 6636 KB Output is correct
2 Correct 4 ms 6636 KB Output is correct
3 Correct 4 ms 6636 KB Output is correct
4 Correct 4 ms 6636 KB Output is correct
5 Correct 7 ms 6764 KB Output is correct
6 Correct 11 ms 6892 KB Output is correct
7 Correct 102 ms 10604 KB Output is correct
8 Correct 8 ms 6764 KB Output is correct
9 Correct 11 ms 6892 KB Output is correct
10 Correct 101 ms 10604 KB Output is correct
11 Correct 97 ms 10604 KB Output is correct
12 Correct 96 ms 10732 KB Output is correct
13 Correct 100 ms 10604 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 6636 KB Output is correct
2 Correct 4 ms 6636 KB Output is correct
3 Correct 4 ms 6636 KB Output is correct
4 Correct 4 ms 6636 KB Output is correct
5 Correct 7 ms 6764 KB Output is correct
6 Correct 11 ms 6892 KB Output is correct
7 Correct 102 ms 10604 KB Output is correct
8 Correct 8 ms 6764 KB Output is correct
9 Correct 11 ms 6892 KB Output is correct
10 Correct 101 ms 10604 KB Output is correct
11 Correct 97 ms 10604 KB Output is correct
12 Correct 96 ms 10732 KB Output is correct
13 Correct 100 ms 10604 KB Output is correct
14 Correct 249 ms 13932 KB Output is correct
15 Correct 2693 ms 53532 KB Output is correct
16 Correct 241 ms 13932 KB Output is correct
17 Correct 2685 ms 53532 KB Output is correct
18 Correct 1485 ms 53612 KB Output is correct
19 Correct 1626 ms 53684 KB Output is correct
20 Correct 2144 ms 53532 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 6636 KB Output is correct
2 Correct 4 ms 6636 KB Output is correct
3 Incorrect 73 ms 9836 KB Output isn't correct
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 4 ms 6636 KB Output is correct
2 Correct 5 ms 6636 KB Output is correct
3 Correct 4 ms 6636 KB Output is correct
4 Correct 4 ms 6636 KB Output is correct
5 Incorrect 4 ms 6636 KB Output isn't correct
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 4 ms 6636 KB Output is correct
2 Correct 4 ms 6636 KB Output is correct
3 Incorrect 5 ms 6636 KB Output isn't correct
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 4 ms 6636 KB Output is correct
2 Correct 4 ms 6636 KB Output is correct
3 Correct 4 ms 6636 KB Output is correct
4 Correct 4 ms 6636 KB Output is correct
5 Correct 4 ms 6636 KB Output is correct
6 Incorrect 64 ms 9452 KB Output isn't correct
7 Halted 0 ms 0 KB -