Submission #354342

# Submission time Handle Problem Language Result Execution time Memory
354342 2021-01-21T18:50:20 Z ryansee Comparing Plants (IOI20_plants) C++14
25 / 100
4000 ms 50700 KB
#include "plants.h"
 
#include "bits/stdc++.h"
using namespace std;
 
#define FAST ios_base::sync_with_stdio(false); cin.tie(0);
#define pb push_back
#define eb emplace_back
#define ins insert
#define f first
#define s second
#define cbr cerr<<"hi\n"
#define mmst(x, v) memset((x), v, sizeof ((x)))
#define siz(x) ll(x.size())
#define all(x) (x).begin(), (x).end()
#define lbd(x,y) (lower_bound(all(x),y)-x.begin())
#define ubd(x,y) (upper_bound(all(x),y)-x.begin())
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());    //can be used by calling rng() or shuffle(A, A+n, rng)
inline long long rand(long long x, long long y) { return rng() % (y+1-x) + x; } //inclusivesss
string inline to_string(char c) {string s(1,c);return s;} template<typename T> inline T gcd(T a,T b){ return a==0?llabs(b):gcd(b%a,a); }
 
using ll=long long; 
using ld=long double;
#define FOR(i,s,e) for(ll i=s;i<=ll(e);++i)
#define DEC(i,s,e) for(ll i=s;i>=ll(e);--i)
using pi=pair<ll,ll>; using spi=pair<ll,pi>; using dpi=pair<pi,pi>; 
 
long long LLINF = 1e18;
int INF = 1e9+1e6;
#define MAXN (200002)
 
int n, start, k;
vector<int> R;
ll A[MAXN];
int dp[2][MAXN], dp2[2][MAXN];
inline ll cy(ll x) {
	x %= n, x += n, x %= n; return x;
}
vector<int> v[306];
bitset<306> reach[306];
ll dist(int x,int y) {
	if(x > y) swap(x, y);
	return min(y-x, n-y+x);	
}

struct node {
	int s,e,m;
	spi v;
	ll lazy[3];
	node*l,*r;
	node(int S,int E){
		s=S,e=E,m=(s+e)>>1;
		v=spi(LLINF, pi(0, -1)), mmst(lazy, 0);
		if(s^e)l=new node(s,m),r=new node(m+1,e),v=min(l->v,r->v);
		else v=spi(R[s], pi(0, s));
	}
	void value() {
		v.f += lazy[0], v.s.f += lazy[1];
		if(s^e) FOR(i,0,1) l->lazy[i]+=lazy[i], r->lazy[i]+=lazy[i];
		lazy[0]=lazy[1]=0;
	}
	void update(int x,int y,pi nval) {
		if(s==x&&e==y) {
			if(nval.s <= 1) lazy[nval.s] += nval.f;
			else lazy[nval.s] = max(lazy[nval.s], nval.f);
			return;
		}
		if(x>m) r->update(x,y,nval);
		else if(y<=m) l->update(x,y,nval);
		else l->update(x,m,nval),r->update(m+1,y,nval);
		l->value(), r->value();
		v=min(l->v,r->v);
	}
	spi rmq(int x,int y) {
		value();
		if(s==x&&e==y) return v;
		if(x>m) return r->rmq(x,y);
		else if(y<=m) return l->rmq(x,y);
		else return min(l->rmq(x,m),r->rmq(m+1,y));
	}
	void set(int x,ll add=0) {
		value();
		add = max(add, lazy[2]);
		if(s==e) {
			A[s] = add;
			v = spi(LLINF, pi(0, -1));
			return;
		}
		if(x>m) r->set(x, add);
		else l->set(x, add);
		l->value(), r->value();
		v = min(l->v, r->v);
	}
} *seg;
void update(int x,int y,pi nval) {
	x=cy(x), y=cy(y);
	if(x<=y) seg->update(x,y,nval);
	else seg->update(x,n-1,nval), seg->update(0,y,nval);
}
spi rmq(int x,int y) {
	x=cy(x), y=cy(y);
	if(x<=y) return seg->rmq(x, y);
	else return min(seg->rmq(x, n-1), seg->rmq(0, y));
}
struct fen {
	ll fw[MAXN];
	fen() { mmst(fw, 0); }
	void update(int x,ll nval) {
		++ x;
		for(;x<MAXN;x+=x&(-x)) fw[x]+=nval;
	}
	ll sum(int x) {
		++ x;
		ll res=0;
		for(;x;x-=x&(-x)) res+=fw[x];
		return res;
	}
	ll sum(int a,int b) { return sum(b) - sum(a-1); }
} fw[2];
void init(int K, std::vector<int> r) { k=K, R=r;
	n=r.size();
	seg=new node(0, n-1);
	FOR(i,0,n-1) if(r[i]==0) update(i+1, i+k-1, pi(1, 1));
	while(1) {
		start = -1;
		// FOR(i,0,n-1) if(!gone[i] && r[i] == 0) {
			// DEC(jj,i-1,i-k+1) {
				// int j = (jj + n) % n;
				// if(!gone[j] && r[j] == 0) goto no;
			// }
			// start = i;
			// break;
			// no:;
		// }
		start = seg->rmq(0, n-1).s.s;
		if(start == -1) break;
		// gone[start] = 1;
		seg->set(start);
		// FOR(i,start+1,start+k-1) if(!gone[i%n]) {
			// A[i%n]=max(A[i%n], A[start]+1);
		// }
		update(start+1, start+k-1, pi(A[start]+1, 2));
		update(start+1, start+k-1, pi(-1, 1));
		// FOR(i,start-k+1,start-1) if(!gone[(i+n)%n]) {
			// A[(i+n)%n] = max(A[(i+n)%n], A[start]+1), -- r[(i+n)%n];
		// }
		update(start-k+1, start-1, pi(A[start]+1, 2));
		update(start-k+1, start-1, pi(-1, 0));
		vector<int> tmp;
		while(1) {
			spi x = rmq(start-k+1, start-1);
			if(x.f == 0) {
				tmp.eb(x.s.s);
				update(x.s.s+1, x.s.s+k-1, pi(1, 1));
				update(x.s.s, x.s.s, pi(1, 0));
			} else break;
		}
		for(auto i:tmp) update(i, i, pi(-1, 0));
	}
	// FOR(i,0,n-1) assert(r[i]==0);
	
	if(n <= 300) {
		FOR(i,0,n-1) {
			FOR(jj,i+1,i+k-1) { int j=cy(jj);
				if(A[i] > A[j]) {
					v[i].eb(j);
				} else {
					v[j].eb(i);
				}
			}
		}
		function<void(ll,ll)>dfs=[&](ll x,ll o){
			if(reach[o][x]) return;
			reach[o][x]=1;
			for(auto i:v[x]) dfs(i, o);
		};
		FOR(i,0,n-1) dfs(i, i);
	}
	dp[0][0]=dp[1][0]=1;
	FOR(i,0,1) fw[i].update(A[0], 1);
	FOR(i,1,n-1) {
		// FOR(jj,i-k+1,i-1) { int j=cy(jj);
			// assert(A[i] ^ A[j]);
			// if(A[i] < A[j]) dp[0][i] |= dp[0][j];
			// else dp[1][i] |= dp[1][j];
		// }
		if(i >= k) FOR(j,0,1) if(dp[j][i-k]) fw[j].update(A[i-k], -1);
		dp[0][i] = fw[0].sum(A[i]+1, MAXN-2) > 0;
		dp[1][i] = fw[1].sum(0, A[i]-1) > 0;
		FOR(j,0,1) if(dp[j][i]) fw[j].update(A[i], 1);
	}
	dp2[0][0]=dp2[1][0]=1;
	DEC(ii,0,-n+1) { int i=cy(ii);
		FOR(jj,i+1,i+k-1) { int j=cy(jj);
			assert(A[i] ^ A[j]);
			if(A[i] < A[j]) dp2[0][i] |= dp2[0][j];
			else dp2[1][i] |= dp2[1][j];
		}
	}
}
int compare_plants(int x, int y) {
	if(x == 0) {
		if(dp[0][y] || dp2[0][y]) return -1;
		else if(dp[1][y] || dp2[1][y]) return 1;
		else return 0;
	}
	if(n > 300 || reach[x][y] || reach[y][x]) return A[x] < A[y] ? 1 : -1;
	else return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 2 ms 3436 KB Output is correct
2 Correct 2 ms 3436 KB Output is correct
3 Correct 2 ms 3436 KB Output is correct
4 Correct 2 ms 3436 KB Output is correct
5 Correct 2 ms 3436 KB Output is correct
6 Correct 60 ms 6380 KB Output is correct
7 Incorrect 131 ms 10860 KB Output isn't correct
8 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 3 ms 3436 KB Output is correct
2 Correct 3 ms 3436 KB Output is correct
3 Correct 2 ms 3436 KB Output is correct
4 Correct 3 ms 3436 KB Output is correct
5 Correct 5 ms 3564 KB Output is correct
6 Correct 18 ms 3820 KB Output is correct
7 Correct 347 ms 7532 KB Output is correct
8 Correct 6 ms 3692 KB Output is correct
9 Correct 18 ms 3820 KB Output is correct
10 Correct 340 ms 7592 KB Output is correct
11 Correct 237 ms 7564 KB Output is correct
12 Correct 220 ms 7532 KB Output is correct
13 Correct 408 ms 7532 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 3436 KB Output is correct
2 Correct 3 ms 3436 KB Output is correct
3 Correct 2 ms 3436 KB Output is correct
4 Correct 3 ms 3436 KB Output is correct
5 Correct 5 ms 3564 KB Output is correct
6 Correct 18 ms 3820 KB Output is correct
7 Correct 347 ms 7532 KB Output is correct
8 Correct 6 ms 3692 KB Output is correct
9 Correct 18 ms 3820 KB Output is correct
10 Correct 340 ms 7592 KB Output is correct
11 Correct 237 ms 7564 KB Output is correct
12 Correct 220 ms 7532 KB Output is correct
13 Correct 408 ms 7532 KB Output is correct
14 Correct 2873 ms 11260 KB Output is correct
15 Execution timed out 4069 ms 49132 KB Time limit exceeded
16 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 3 ms 3436 KB Output is correct
2 Correct 2 ms 3436 KB Output is correct
3 Correct 71 ms 6784 KB Output is correct
4 Correct 1049 ms 50660 KB Output is correct
5 Correct 1685 ms 50540 KB Output is correct
6 Execution timed out 4073 ms 50548 KB Time limit exceeded
7 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 3 ms 3436 KB Output is correct
2 Correct 2 ms 3436 KB Output is correct
3 Correct 2 ms 3436 KB Output is correct
4 Correct 2 ms 3436 KB Output is correct
5 Correct 2 ms 3436 KB Output is correct
6 Correct 4 ms 3564 KB Output is correct
7 Correct 17 ms 4204 KB Output is correct
8 Correct 38 ms 4332 KB Output is correct
9 Correct 18 ms 4204 KB Output is correct
10 Correct 38 ms 4332 KB Output is correct
11 Correct 18 ms 4204 KB Output is correct
12 Correct 20 ms 4204 KB Output is correct
13 Correct 76 ms 4844 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 3436 KB Output is correct
2 Correct 2 ms 3436 KB Output is correct
3 Correct 2 ms 3436 KB Output is correct
4 Correct 2 ms 3456 KB Output is correct
5 Correct 9 ms 3692 KB Output is correct
6 Correct 1657 ms 50700 KB Output is correct
7 Execution timed out 4026 ms 50452 KB Time limit exceeded
8 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 2 ms 3436 KB Output is correct
2 Correct 2 ms 3436 KB Output is correct
3 Correct 2 ms 3436 KB Output is correct
4 Correct 2 ms 3436 KB Output is correct
5 Correct 2 ms 3436 KB Output is correct
6 Correct 60 ms 6380 KB Output is correct
7 Incorrect 131 ms 10860 KB Output isn't correct
8 Halted 0 ms 0 KB -