//#pragma GCC optimize("Ofast,unroll-loops")
//#pragma GCC target("avx,avx2,sse,sse2")
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <bits/stdc++.h>
using namespace std;
using namespace __gnu_pbds;
template <class T> using Tree = tree<T, null_type, less<T>,
rb_tree_tag, tree_order_statistics_node_update>;
using ll = long long;
using ull = unsigned long long;
using ld = long double;
using db = double;
using str = string; // yay python!
using pi = pair<int,int>;
using pl = pair<ll,ll>;
using pd = pair<db,db>;
using vi = vector<int>;
using vb = vector<bool>;
using vl = vector<ll>;
using vd = vector<db>;
using vs = vector<str>;
using vpi = vector<pi>;
using vpl = vector<pl>;
using vpd = vector<pd>;
using cd = complex<ld>;
#define tcT template<class T
// ^ lol this makes everything look weird but I'll try it
tcT> using V = vector<T>;
tcT, size_t SZ> using AR = array<T,SZ>;
// pairs
#define mp make_pair
#define f first
#define s second
// vectors
#define sz(x) (int)(x).size()
#define all(x) begin(x), end(x)
#define rall(x) (x).rbegin(), (x).rend()
#define sor(x) sort(all(x))
#define rsz resize
#define ins insert
#define ft front()
#define bk back()
#define pf push_front
#define pb push_back
#define eb emplace_back
#define lb lower_bound
#define ub upper_bound
// loops
#define FOR(i,a,b) for (int i = (a); i < (b); ++i)
#define F0R(i,a) FOR(i,0,a)
#define ROF(i,a,b) for (int i = (b)-1; i >= (a); --i)
#define R0F(i,a) ROF(i,0,a)
#define trav(a,x) for (auto& a: x)
const int MOD = 998244353;// 1e9+7; // 998244353
const int MX = 2e5+5;
const ll INF = 1e18; // not too close to LLONG_MAX
const int IINF = 1e9;
const ld PI = acos((ld)-1);
const int xd[4] = {1,0,-1,0}, yd[4] = {0,1,0,-1}; // for every grid problem!!
mt19937 rng((uint32_t)chrono::steady_clock::now().time_since_epoch().count());
// helper funcs
constexpr int pct(int x) { return __builtin_popcount(x); } // # of bits set
constexpr int bits(int x) { return 31-__builtin_clz(x); } // floor(log2(x))
ll cdiv(ll a, ll b) { return a/b+((a^b)>0&&a%b); } // divide a by b rounded up
ll fdiv(ll a, ll b) { return a/b-((a^b)<0&&a%b); } // divide a by b rounded down
tcT> bool ckmin(T& a, const T& b) {
return b < a ? a = b, 1 : 0; } // set a = min(a,b)
tcT> bool ckmax(T& a, const T& b) {
return a < b ? a = b, 1 : 0; }
#define tcTU tcT, class U
tcTU> T fstTrue(T lo, T hi, U f) {
hi ++; assert(lo <= hi); // assuming f is increasing
while (lo < hi) { // find first index such that f is true
T mid = lo+(hi-lo)/2;
f(mid) ? hi = mid : lo = mid+1;
}
return lo;
}
tcTU> T lstTrue(T lo, T hi, U f) {
lo --; assert(lo <= hi); // assuming f is decreasing
while (lo < hi) { // find first index such that f is true
T mid = lo+(hi-lo+1)/2;
f(mid) ? lo = mid : hi = mid-1;
}
return lo;
}
tcT> void remDup(vector<T>& v) { // sort and remove duplicates
sort(all(v)); v.erase(unique(all(v)),end(v)); }
tcTU> void erase(T& t, const U& u) { // don't erase
auto it = t.find(u); assert(it != end(t));
t.erase(u); } // element that doesn't exist from (multi)set
// INPUT
#define tcTUU tcT, class ...U
tcT> void re(complex<T>& c);
tcTU> void re(pair<T,U>& p);
tcT> void re(vector<T>& v);
tcT, size_t SZ> void re(AR<T,SZ>& a);
tcT> void re(T& x) { cin >> x; }
void re(db& d) { str t; re(t); d = stod(t); }
void re(ld& d) { str t; re(t); d = stold(t); }
tcTUU> void re(T& t, U&... u) { re(t); re(u...); }
tcT> void re(complex<T>& c) { T a,b; re(a,b); c = {a,b}; }
tcTU> void re(pair<T,U>& p) { re(p.f,p.s); }
tcT> void re(vector<T>& x) { trav(a,x) re(a); }
tcT, size_t SZ> void re(AR<T,SZ>& x) { trav(a,x) re(a); }
// TO_STRING
#define ts to_string
str ts(char c) { return str(1,c); }
str ts(const char* s) { return (str)s; }
str ts(str s) { return s; }
str ts(bool b) {
#ifdef LOCAL
return b ? "true" : "false";
#else
return ts((int)b);
#endif
}
tcT> str ts(complex<T> c) {
stringstream ss; ss << c; return ss.str(); }
str ts(vector<bool> v) {
str res = "{"; F0R(i,sz(v)) res += char('0'+v[i]);
res += "}"; return res; }
template<size_t SZ> str ts(bitset<SZ> b) {
str res = ""; F0R(i,SZ) res += char('0'+b[i]);
return res; }
tcTU> str ts(pair<T,U> p);
tcT> str ts(T v) { // containers with begin(), end()
#ifdef LOCAL
bool fst = 1; str res = "{";
for (const auto& x: v) {
if (!fst) res += ", ";
fst = 0; res += ts(x);
}
res += "}"; return res;
#else
bool fst = 1; str res = "";
for (const auto& x: v) {
if (!fst) res += " ";
fst = 0; res += ts(x);
}
return res;
#endif
}
tcTU> str ts(pair<T,U> p) {
#ifdef LOCAL
return "("+ts(p.f)+", "+ts(p.s)+")";
#else
return ts(p.f)+" "+ts(p.s);
#endif
}
// OUTPUT
tcT> void pr(T x) { cout << ts(x); }
tcTUU> void pr(const T& t, const U&... u) {
pr(t); pr(u...); }
void ps() { pr("\n"); } // print w/ spaces
tcTUU> void ps(const T& t, const U&... u) {
pr(t); if (sizeof...(u)) pr(" "); ps(u...); }
// DEBUG
void DBG() { cerr << "]" << endl; }
tcTUU> void DBG(const T& t, const U&... u) {
cerr << ts(t); if (sizeof...(u)) cerr << ", ";
DBG(u...); }
#ifdef LOCAL // compile with -DLOCAL, chk -> fake assert
#define dbg(...) cerr << "Line(" << __LINE__ << ") -> [" << #__VA_ARGS__ << "]: [", DBG(__VA_ARGS__)
#define chk(...) if (!(__VA_ARGS__)) cerr << "Line(" << __LINE__ << ") -> function(" \
<< __FUNCTION__ << ") -> CHK FAILED: (" << #__VA_ARGS__ << ")" << "\n", exit(0);
#else
#define dbg(...) 0
#define chk(...) 0
#endif
// FILE I/O
void setIn(str s) { freopen(s.c_str(),"r",stdin); }
void setOut(str s) { freopen(s.c_str(),"w",stdout); }
void unsyncIO() { cin.tie(0)->sync_with_stdio(0); }
void setIO(str s = "") {
unsyncIO();
// cin.exceptions(cin.failbit);
// throws exception when do smth illegal
// ex. try to read letter into int
if (sz(s)) { setIn(s+".in"), setOut(s+".out"); } // for USACO
}
struct custom_hash {
static uint64_t splitmix64(uint64_t x) {
// http://xorshift.di.unimi.it/splitmix64.c
x += 0x9e3779b97f4a7c15;
x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
return x ^ (x >> 31);
}
size_t operator()(uint64_t x) const {
static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();
return splitmix64(x + FIXED_RANDOM);
}
};
struct DSU {
vi e; void init(int N) { e = vi(N,-1); }
int get(int x) { return e[x] < 0 ? x : e[x] = get(e[x]); }
bool sameSet(int a, int b) { return get(a) == get(b); }
int size(int x) { return -e[get(x)]; }
bool unite(int x, int y) { // union by size
x = get(x), y = get(y); if (x == y) return 0;
if (e[x] > e[y]) swap(x,y);
e[x] += e[y]; e[y] = x; return 1;
}
};
using T = db; // or long long
const T EPS = 1e-12; // might want to change
using P = pair<T,T>; using vP = V<P>; using Line = pair<P,P>;
int sgn(T a) { return (a>EPS)-(a<-EPS); }
T sq(T a) { return a*a; }
bool close(const P& a, const P& b) {
return sgn(a.f-b.f) == 0 && sgn(a.s-b.s) == 0; }
T norm(const P& p) { return sq(p.f)+sq(p.s); }
T abs(const P& p) { return sqrt(norm(p)); }
T arg(const P& p) { return atan2(p.s,p.f); }
P conj(const P& p) { return P(p.f,-p.s); }
P perp(const P& p) { return P(-p.s,p.f); }
P dir(T ang) { return P(cos(ang),sin(ang)); }
P operator-(const P& l) { return P(-l.f,-l.s); }
P operator+(const P& l, const P& r) {
return P(l.f+r.f,l.s+r.s); }
P operator-(const P& l, const P& r) {
return P(l.f-r.f,l.s-r.s); }
P operator*(const P& l, const T& r) {
return P(l.f*r,l.s*r); }
P operator*(const T& l, const P& r) { return r*l; }
P operator/(const P& l, const T& r) {
return P(l.f/r,l.s/r); }
P operator*(const P& l, const P& r) {
return P(l.f*r.f-l.s*r.s,l.s*r.f+l.f*r.s); }
P operator/(const P& l, const P& r) {
return l*conj(r)/norm(r); }
P& operator+=(P& l, const P& r) { return l = l+r; }
P& operator-=(P& l, const P& r) { return l = l-r; }
P& operator*=(P& l, const T& r) { return l = l*r; }
P& operator/=(P& l, const T& r) { return l = l/r; }
P& operator*=(P& l, const P& r) { return l = l*r; }
P& operator/=(P& l, const P& r) { return l = l/r; }
P unit(const P& p) { return p/abs(p); }
T dot(const P& a, const P& b) { return a.f*b.f+a.s*b.s; }
T cross(const P& a, const P& b) { return a.f*b.s-a.s*b.f; }
T cross(const P& p, const P& a, const P& b) {
return cross(a-p,b-p); }
P reflect(const P& p, const Line& l) {
P a = l.f, d = l.s-l.f;
return a+conj((p-a)/d)*d; }
P foot(const P& p, const Line& l) {
return (p+reflect(p,l))/(T)2; }
bool p_on_seg(const P& p, const Line& l) {
return sgn(cross(l.f,l.s,p)) == 0;}// && sgn(dot(p-l.f,p-l.s)) <= 0; }
int N, M;
vector<array<ll, 4>> E;
ll ANS = INF, ANSX = -1, ANSY = -1;
vpi edges;
pl opt(ll A, ll B){
vector<pair<pair<ll, pl>, pl>> ed;
trav(a, E)
ed.pb(mp(mp(A * a[2] + B * a[3], mp(a[0], a[1])), mp(a[2], a[3])));
sort(all(ed));
DSU D; D.init(N); // edges that unite are in MST
ll X = 0, Y = 0, ans = 0;
vpi stor;
trav(a,ed) if (D.unite(a.f.s.f,a.f.s.s)){
X += a.s.f;
Y += a.s.s;
ans += a.s.f * a.s.s;
stor.eb(a.f.s.f, a.f.s.s);
}
if(ckmin(ANS, ans)){
ANSX = X;
ANSY = Y;
swap(edges, stor);
}
return mp(X, Y);
}
void solve(pl L, pl R){
ll A = L.s - R.s, B = R.f - L.f;
assert(A >= 0 && B >= 0);
if(A && B){
ll temp = __gcd(A, B);
A /= temp;
B /= temp;
}
auto mid = opt(A, B);
if(p_on_seg(P(mid.f, mid.s), mp(P(L.f, L.s), P(R.f, R.s))))
return;
solve(L, mid);
solve(mid, R);
}
int main(){
setIO();
cin >> N >> M;
E.rsz(M);
re(E);
auto L = opt(1, 0);
auto R = opt(0, 1);
solve(L, R);
cout << ANSX << " " << ANSY << endl;
trav(a, edges)
cout << a.f << " " << a.s << endl;
//you should actually read the stuff at the bottom
}
/* stuff you should look for
* int overflow, array bounds
* special cases (n=1?)
* do smth instead of nothing and stay organized
* WRITE STUFF DOWN
* DON'T GET STUCK ON ONE APPROACH
*/
Compilation message
timeismoney.cpp: In function 'void setIn(str)':
timeismoney.cpp:193:28: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
193 | void setIn(str s) { freopen(s.c_str(),"r",stdin); }
| ~~~~~~~^~~~~~~~~~~~~~~~~~~~~
timeismoney.cpp: In function 'void setOut(str)':
timeismoney.cpp:194:29: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
194 | void setOut(str s) { freopen(s.c_str(),"w",stdout); }
| ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1 ms |
364 KB |
Output is correct |
2 |
Correct |
1 ms |
364 KB |
Output is correct |
3 |
Correct |
1 ms |
396 KB |
Output is correct |
4 |
Correct |
1 ms |
364 KB |
Output is correct |
5 |
Correct |
1 ms |
364 KB |
Output is correct |
6 |
Correct |
1 ms |
364 KB |
Output is correct |
7 |
Correct |
3 ms |
620 KB |
Output is correct |
8 |
Correct |
10 ms |
1884 KB |
Output is correct |
9 |
Correct |
1 ms |
364 KB |
Output is correct |
10 |
Incorrect |
1 ms |
364 KB |
Output isn't correct |
11 |
Incorrect |
1 ms |
364 KB |
Output isn't correct |
12 |
Incorrect |
1 ms |
364 KB |
Output isn't correct |
13 |
Incorrect |
1 ms |
364 KB |
Output isn't correct |
14 |
Incorrect |
8 ms |
364 KB |
Output isn't correct |
15 |
Incorrect |
6 ms |
364 KB |
Output isn't correct |
16 |
Incorrect |
126 ms |
648 KB |
Output isn't correct |
17 |
Incorrect |
139 ms |
768 KB |
Output isn't correct |
18 |
Incorrect |
128 ms |
784 KB |
Output isn't correct |
19 |
Incorrect |
1400 ms |
1980 KB |
Output isn't correct |
20 |
Incorrect |
1437 ms |
1960 KB |
Output isn't correct |