# |
Submission time |
Handle |
Problem |
Language |
Result |
Execution time |
Memory |
346853 |
2021-01-11T09:24:49 Z |
BlancaHM |
Raisins (IOI09_raisins) |
C++14 |
|
1479 ms |
33388 KB |
#include <climits>
#include <iostream>
#include <vector>
using namespace std;
const int N = 51; // el máximo valor, más 1 para operar en el rango 1..50.
const int M = 51;
vector<vector<int>> ps_v; // 2D prefix sums de los valores (núm. de raisins).
// Retorna el mínimo coste de partir una tableta rectangular de dimensiones
// horizontales x..X y verticales y..Y
int f(int x, int X, int y, int Y, vector<vector<vector<vector<int>>>> & dp) {
if (x + 1 == X && y + 1 == Y) return 0; // caso base
if (dp[x][X][y][Y]) return dp[x][X][y][Y];
int minimo = INT_MAX;
// Calculemos, de entre todos los cortes verticales y horizontales posibles,
// aquel de coste mínimo.
// Cortes horizontales
for (int i = x + 1; i < X; i++) {
minimo = min(minimo, f(x, i, y, Y, dp) /* cacho superior */ +
f(i, X, y, Y, dp) /* cacho inferior */);
}
// Cortes verticales
for (int i = y + 1; i < Y; i++) {
minimo = min(minimo, f(x, X, y, i, dp) /* cacho izquierdo*/ +
f(x, X, i, Y, dp) /* cacho derecho */);
}
// Combinamos el resultado mínimo obtenido de los subproblemas con el coste
// del problema actual, utilizando 2D prefix sums.
return dp[x][X][y][Y] =
minimo + ps_v[X][Y] - ps_v[x][Y] - ps_v[X][y] + ps_v[x][y];
}
int main() {
int n, m;
cin >> n >> m;
ps_v = vector<vector<int>>(n + 1, vector<int>(m + 1));
vector<vector<vector<vector<int>>>> dp(N, vector<vector<vector<int>>>(M, vector<vector<int>>(N, vector<int>(M, 0))));
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
cin >> ps_v[i][j];
}
}
// Cálculo de las 2D prefix sums
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
ps_v[i][j] += ps_v[i - 1][j] + ps_v[i][j - 1] - ps_v[i - 1][j - 1];
}
}
cout << f(0, n, 0, m, dp) << '\n';
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
25 ms |
33260 KB |
Output is correct |
2 |
Correct |
26 ms |
33260 KB |
Output is correct |
3 |
Correct |
25 ms |
33260 KB |
Output is correct |
4 |
Correct |
25 ms |
33260 KB |
Output is correct |
5 |
Correct |
26 ms |
33260 KB |
Output is correct |
6 |
Correct |
26 ms |
33260 KB |
Output is correct |
7 |
Correct |
26 ms |
33260 KB |
Output is correct |
8 |
Correct |
38 ms |
33260 KB |
Output is correct |
9 |
Correct |
51 ms |
33260 KB |
Output is correct |
10 |
Correct |
63 ms |
33388 KB |
Output is correct |
11 |
Correct |
61 ms |
33260 KB |
Output is correct |
12 |
Correct |
156 ms |
33260 KB |
Output is correct |
13 |
Correct |
258 ms |
33260 KB |
Output is correct |
14 |
Correct |
74 ms |
33260 KB |
Output is correct |
15 |
Correct |
316 ms |
33260 KB |
Output is correct |
16 |
Correct |
50 ms |
33260 KB |
Output is correct |
17 |
Correct |
146 ms |
33260 KB |
Output is correct |
18 |
Correct |
803 ms |
33388 KB |
Output is correct |
19 |
Correct |
1255 ms |
33300 KB |
Output is correct |
20 |
Correct |
1479 ms |
33388 KB |
Output is correct |