Submission #341876

# Submission time Handle Problem Language Result Execution time Memory
341876 2020-12-31T10:57:09 Z bigDuck Crocodile's Underground City (IOI11_crocodile) C++14
100 / 100
994 ms 59908 KB
#include "crocodile.h"
#include<bits/stdc++.h>
using namespace std;
#define INIT  ios_base :: sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL);mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
#define mp make_pair
#define pb push_back
#define ft first
#define sc second
#define ll long long
#define pii pair<int, int>
#define count_bits __builtin_popcount


int p[100010], k;
vector<pii> g[100010];

bool v[100010];
int d[100010][2];

void tricky_dijkstra(){
multiset<pii> ms;

for(int i=1; i<=k; i++){
    ms.insert({0, p[i]});
    v[p[i]]=true;
}

while(!ms.empty()){
    auto pr=(*ms.begin()); ms.erase(ms.begin());
    int node=pr.sc, d0=pr.ft;
    v[node]=true;
    if(node==0){
        break;
    }
    for(auto pr:g[node]){
        int u=pr.ft, c=pr.sc;
        if(!v[u]){
            auto it=ms.find({d[u][1], u});
            if(it==ms.end()){
                if(d[u][0]==0){
                    d[u][0]=d0+c;
                }
                else{
                    d[u][1]=d0+c;
                    if(d[u][1]<d[u][0]){
                        swap(d[u][1], d[u][0]);
                    }
                    ms.insert({d[u][1], u});
                }
            }
            else{
                if( (d0+c)<d[u][1]  ){
                    d[u][1]=(d0+c);
                    if(d[u][1]<d[u][0]){
                        swap(d[u][1], d[u][0]);
                    }
                    ms.erase(it);
                    ms.insert({d[u][1], u});
                }
            }
        }
    }
}






}



int travel_plan(int N, int M, int R[][2], int L[], int K, int P[]){

    k=K;
    for(int i=0; i<k; i++){
        p[i+1]=P[i];
    }

    for(int i=0; i<M; i++){
        int u=R[i][0], v=R[i][1], c=L[i];
        g[u].pb({v, c});
        g[v].pb({u, c});
    }
    tricky_dijkstra();
    return d[0][1];
}


# Verdict Execution time Memory Grader output
1 Correct 2 ms 2796 KB Output is correct
2 Correct 2 ms 2668 KB Output is correct
3 Correct 2 ms 2796 KB Output is correct
4 Correct 3 ms 2796 KB Output is correct
5 Correct 3 ms 2796 KB Output is correct
6 Correct 3 ms 2796 KB Output is correct
7 Correct 3 ms 2796 KB Output is correct
8 Correct 3 ms 2796 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 2796 KB Output is correct
2 Correct 2 ms 2668 KB Output is correct
3 Correct 2 ms 2796 KB Output is correct
4 Correct 3 ms 2796 KB Output is correct
5 Correct 3 ms 2796 KB Output is correct
6 Correct 3 ms 2796 KB Output is correct
7 Correct 3 ms 2796 KB Output is correct
8 Correct 3 ms 2796 KB Output is correct
9 Correct 4 ms 2924 KB Output is correct
10 Correct 2 ms 2668 KB Output is correct
11 Correct 3 ms 2796 KB Output is correct
12 Correct 6 ms 3180 KB Output is correct
13 Correct 6 ms 3180 KB Output is correct
14 Correct 2 ms 2700 KB Output is correct
15 Correct 3 ms 2796 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 2796 KB Output is correct
2 Correct 2 ms 2668 KB Output is correct
3 Correct 2 ms 2796 KB Output is correct
4 Correct 3 ms 2796 KB Output is correct
5 Correct 3 ms 2796 KB Output is correct
6 Correct 3 ms 2796 KB Output is correct
7 Correct 3 ms 2796 KB Output is correct
8 Correct 3 ms 2796 KB Output is correct
9 Correct 4 ms 2924 KB Output is correct
10 Correct 2 ms 2668 KB Output is correct
11 Correct 3 ms 2796 KB Output is correct
12 Correct 6 ms 3180 KB Output is correct
13 Correct 6 ms 3180 KB Output is correct
14 Correct 2 ms 2700 KB Output is correct
15 Correct 3 ms 2796 KB Output is correct
16 Correct 873 ms 56480 KB Output is correct
17 Correct 85 ms 13932 KB Output is correct
18 Correct 93 ms 15340 KB Output is correct
19 Correct 994 ms 59908 KB Output is correct
20 Correct 310 ms 49660 KB Output is correct
21 Correct 44 ms 7788 KB Output is correct
22 Correct 392 ms 46060 KB Output is correct