#line 1 "main.cpp"
/**
* @title Template
*/
#include <iostream>
#include <algorithm>
#include <utility>
#include <numeric>
#include <vector>
#include <array>
#include <cassert>
#include <map>
#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/range.cpp"
#line 4 "/Users/kodamankod/Desktop/cpp_programming/Library/other/range.cpp"
class range {
struct iter {
std::size_t itr;
constexpr iter(std::size_t pos) noexcept: itr(pos) { }
constexpr void operator ++ () noexcept { ++itr; }
constexpr bool operator != (iter other) const noexcept { return itr != other.itr; }
constexpr std::size_t operator * () const noexcept { return itr; }
};
struct reviter {
std::size_t itr;
constexpr reviter(std::size_t pos) noexcept: itr(pos) { }
constexpr void operator ++ () noexcept { --itr; }
constexpr bool operator != (reviter other) const noexcept { return itr != other.itr; }
constexpr std::size_t operator * () const noexcept { return itr; }
};
const iter first, last;
public:
constexpr range(std::size_t first, std::size_t last) noexcept: first(first), last(std::max(first, last)) { }
constexpr iter begin() const noexcept { return first; }
constexpr iter end() const noexcept { return last; }
constexpr reviter rbegin() const noexcept { return reviter(*last - 1); }
constexpr reviter rend() const noexcept { return reviter(*first - 1); }
};
/**
* @title Range
*/
#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/container/segment_tree.cpp"
#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/monoid.cpp"
#include <type_traits>
#line 5 "/Users/kodamankod/Desktop/cpp_programming/Library/other/monoid.cpp"
#include <stdexcept>
template <class T, class = void>
class has_identity: public std::false_type { };
template <class T>
class has_identity<T, typename std::conditional<false, decltype(T::identity()), void>::type>: public std::true_type { };
template <class T>
constexpr typename std::enable_if<has_identity<T>::value, typename T::type>::type empty_exception() {
return T::identity();
}
template <class T>
[[noreturn]] typename std::enable_if<!has_identity<T>::value, typename T::type>::type empty_exception() {
throw std::runtime_error("type T has no identity");
}
template <class T, bool HasIdentity>
class fixed_monoid_impl: public T {
public:
using type = typename T::type;
static constexpr type convert(const type &value) { return value; }
static constexpr type revert(const type &value) { return value; }
template <class Mapping, class Value, class... Args>
static constexpr void operate(Mapping &&func, Value &value, const type &op, Args&&... args) {
value = func(value, op, std::forward<Args>(args)...);
}
template <class Constraint>
static constexpr bool satisfies(Constraint &&func, const type &value) {
return func(value);
}
};
template <class T>
class fixed_monoid_impl<T, false> {
public:
class type {
public:
typename T::type value;
bool state;
explicit constexpr type(): value(typename T::type { }), state(false) { }
explicit constexpr type(const typename T::type &value): value(value), state(true) { }
};
static constexpr type convert(const typename T::type &value) { return type(value); }
static constexpr typename T::type revert(const type &value) {
if (!value.state) throw std::runtime_error("attempted to revert identity to non-monoid");
return value.value;
}
static constexpr type identity() { return type(); }
static constexpr type operation(const type &v1, const type &v2) {
if (!v1.state) return v2;
if (!v2.state) return v1;
return type(T::operation(v1.value, v2.value));
}
template <class Mapping, class Value, class... Args>
static constexpr void operate(Mapping &&func, Value &value, const type &op, Args&&... args) {
if (!op.state) return;
value = func(value, op.value, std::forward<Args>(args)...);
}
template <class Constraint>
static constexpr bool satisfies(Constraint &&func, const type &value) {
if (!value.state) return false;
return func(value.value);
}
};
template <class T>
using fixed_monoid = fixed_monoid_impl<T, has_identity<T>::value>;
/**
* @title Monoid Utility
*/
#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/bit_operation.cpp"
#include <cstddef>
#include <cstdint>
constexpr size_t bit_ppc(const uint64_t x) { return __builtin_popcountll(x); }
constexpr size_t bit_ctzr(const uint64_t x) { return x == 0 ? 64 : __builtin_ctzll(x); }
constexpr size_t bit_ctzl(const uint64_t x) { return x == 0 ? 64 : __builtin_clzll(x); }
constexpr size_t bit_width(const uint64_t x) { return 64 - bit_ctzl(x); }
constexpr uint64_t bit_msb(const uint64_t x) { return x == 0 ? 0 : uint64_t(1) << (bit_width(x) - 1); }
constexpr uint64_t bit_lsb(const uint64_t x) { return x & (-x); }
constexpr uint64_t bit_cover(const uint64_t x) { return x == 0 ? 0 : bit_msb(2 * x - 1); }
constexpr uint64_t bit_rev(uint64_t x) {
x = ((x >> 1) & 0x5555555555555555) | ((x & 0x5555555555555555) << 1);
x = ((x >> 2) & 0x3333333333333333) | ((x & 0x3333333333333333) << 2);
x = ((x >> 4) & 0x0F0F0F0F0F0F0F0F) | ((x & 0x0F0F0F0F0F0F0F0F) << 4);
x = ((x >> 8) & 0x00FF00FF00FF00FF) | ((x & 0x00FF00FF00FF00FF) << 8);
x = ((x >> 16) & 0x0000FFFF0000FFFF) | ((x & 0x0000FFFF0000FFFF) << 16);
x = (x >> 32) | (x << 32);
return x;
}
/**
* @title Bit Operations
*/
#line 5 "/Users/kodamankod/Desktop/cpp_programming/Library/container/segment_tree.cpp"
#line 8 "/Users/kodamankod/Desktop/cpp_programming/Library/container/segment_tree.cpp"
#include <iterator>
#line 11 "/Users/kodamankod/Desktop/cpp_programming/Library/container/segment_tree.cpp"
#include <type_traits>
#line 13 "/Users/kodamankod/Desktop/cpp_programming/Library/container/segment_tree.cpp"
template <class Monoid>
class segment_tree {
public:
using structure = Monoid;
using value_monoid = typename Monoid::value_structure;
using value_type = typename Monoid::value_structure::type;
using size_type = size_t;
private:
using fixed_value_monoid = fixed_monoid<value_monoid>;
using fixed_value_type = typename fixed_value_monoid::type;
std::vector<fixed_value_type> M_tree;
void M_fix_change(const size_type index) {
M_tree[index] = fixed_value_monoid::operation(M_tree[index << 1 | 0], M_tree[index << 1 | 1]);
}
public:
segment_tree() = default;
explicit segment_tree(const size_type size) { initialize(size); }
template <class InputIterator>
explicit segment_tree(InputIterator first, InputIterator last) { construct(first, last); }
void initialize(const size_type size) {
clear();
M_tree.assign(size << 1, fixed_value_monoid::identity());
}
template <class InputIterator>
void construct(InputIterator first, InputIterator last) {
clear();
const size_type size = std::distance(first, last);
M_tree.reserve(size << 1);
M_tree.assign(size, fixed_value_monoid::identity());
std::transform(first, last, std::back_inserter(M_tree), [&](const value_type &value) {
return fixed_value_monoid::convert(value);
});
for (size_type index = size - 1; index != 0; --index) {
M_fix_change(index);
}
}
void assign(size_type index, const value_type &value) {
assert(index < size());
index += size();
M_tree[index] = fixed_value_monoid::convert(value);
while (index != 1) {
index >>= 1;
M_fix_change(index);
}
}
value_type at(const size_type index) const {
assert(index < size());
return fixed_value_monoid::revert(M_tree[index + size()]);
}
value_type fold(size_type first, size_type last) const {
assert(first <= last);
assert(last <= size());
first += size();
last += size();
fixed_value_type fold_l = fixed_value_monoid::identity();
fixed_value_type fold_r = fixed_value_monoid::identity();
while (first != last) {
if (first & 1) {
fold_l = fixed_value_monoid::operation(fold_l, M_tree[first]);
++first;
}
if (last & 1) {
--last;
fold_r = fixed_value_monoid::operation(M_tree[last], fold_r);
}
first >>= 1;
last >>= 1;
}
return fixed_value_monoid::revert(fixed_value_monoid::operation(fold_l, fold_r));
}
template <bool ToRight = true, class Constraint, std::enable_if_t<ToRight>* = nullptr>
size_type satisfies(const size_type left, Constraint &&func) const {
assert(left <= size());
if (fixed_value_monoid::satisfies(std::forward<Constraint>(func),
fixed_value_monoid::identity())) return left;
size_type first = left + size();
size_type last = 2 * size();
const size_type last_c = last;
fixed_value_type fold = fixed_value_monoid::identity();
const auto try_merge = [&](const size_type index) {
fixed_value_type tmp = fixed_value_monoid::operation(fold, M_tree[index]);
if (fixed_value_monoid::satisfies(std::forward<Constraint>(func), tmp)) return true;
fold = std::move(tmp);
return false;
};
const auto subtree = [&](size_type index) {
while (index < size()) {
index <<= 1;
if (!try_merge(index)) ++index;
}
return index - size() + 1;
};
size_type story = 0;
while (first < last) {
if (first & 1) {
if (try_merge(first)) return subtree(first);
++first;
}
first >>= 1;
last >>= 1;
++story;
}
while (story--) {
last = last_c >> story;
if (last & 1) {
--last;
if (try_merge(last)) return subtree(last);
}
}
return size() + 1;
}
template <bool ToRight = true, class Constraint, std::enable_if_t<!ToRight>* = nullptr>
size_type satisfies(const size_type right, Constraint &&func) const {
assert(right <= size());
if (fixed_value_monoid::satisfies(std::forward<Constraint>(func),
fixed_value_monoid::identity())) return right;
size_type first = size();
size_type last = right + size();
const size_type first_c = first;
fixed_value_type fold = fixed_value_monoid::identity();
const auto try_merge = [&](const size_type index) {
fixed_value_type tmp = fixed_value_monoid::operation(M_tree[index], fold);
if (fixed_value_monoid::satisfies(std::forward<Constraint>(func), tmp)) return true;
fold = std::move(tmp);
return false;
};
const auto subtree = [&](size_type index) {
while (index < size()) {
index <<= 1;
if (try_merge(index + 1)) ++index;
}
return index - size();
};
size_type story = 0;
while (first < last) {
if (first & 1) ++first;
if (last & 1) {
--last;
if (try_merge(last)) return subtree(last);
}
first >>= 1;
last >>= 1;
++story;
}
const size_type cover = bit_cover(first_c);
while (story--) {
first = (cover >> story) - ((cover - first_c) >> story);
if (first & 1) {
if (try_merge(first)) return subtree(first);
}
}
return size_type(-1);
}
void clear() {
M_tree.clear();
M_tree.shrink_to_fit();
}
size_type size() const {
return M_tree.size() >> 1;
}
};
/**
* @title Segment Tree
*/
#line 17 "main.cpp"
using i32 = std::int32_t;
using i64 = std::int64_t;
using u32 = std::uint32_t;
using u64 = std::uint64_t;
using isize = std::ptrdiff_t;
using usize = std::size_t;
constexpr i32 inf32 = (u32) ~0 >> 2;
constexpr i64 inf64 = (u64) ~0 >> 2;
struct st_monoid {
struct value_structure {
struct type {
i64 max, min, dif;
explicit type(const i64 value): max(value), min(value), dif(0) { }
explicit type(const i64 max, const i64 min, const i64 dif): max(max), min(min), dif(dif) { }
};
static type identity() { return type(-inf64, inf64, -inf64); }
static type operation(const type& v1, const type& v2) {
return type(std::max(v1.max, v2.max), std::min(v1.min, v2.min), std::max({ v2.max - v1.min, v1.dif, v2.dif}));
}
};
};
template <class T>
using Vec = std::vector<T>;
struct Frac {
i64 a, b;
Frac(const i64 x, const i64 y): a(x), b(y) {
if (b < 0) {
a = -a;
b = -b;
}
}
bool operator < (const Frac &other) const {
return a * other.b < other.a * b;
}
bool operator > (const Frac &other) const {
return a * other.b > other.a * b;
}
bool operator == (const Frac &other) const {
return a * other.b == other.a * b;
}
};
constexpr i64 INF = 2000000005;
int main() {
usize N;
std::cin >> N;
Vec<i32> X(N), Y(N), W(N);
for (auto i: range(0, N)) {
std::cin >> X[i] >> Y[i] >> W[i];
}
std::map<Frac, Vec<std::pair<usize, usize>>> query;
for (auto i: range(0, N)) {
for (auto j: range(0, i)) {
if (X[i] != X[j]) {
query[Frac(Y[i] - Y[j], X[i] - X[j])].emplace_back(i, j);
// std::cout << "a " << Y[i] - Y[j] << ' ' << X[i] - X[j] << '\n';
}
}
}
Vec<usize> order(N);
std::iota(order.begin(), order.end(), (usize) 0);
std::sort(order.begin(), order.end(), [&](const usize i, const usize j) {
return X[i] < X[j] || (X[i] == X[j] && Y[i] < Y[j]);
});
Vec<i64> S(N + 1);
for (auto i: range(0, N)) {
S[i + 1] = S[i] + W[order[i]];
}
using type = typename st_monoid::value_structure::type;
segment_tree<st_monoid> seg(N + 1);
for (auto i: range(0, N + 1)) {
seg.assign(i, type(S[i]));
}
i64 ans = seg.fold(0, N + 1).dif;
Vec<usize> inv(N);
for (auto i: range(0, N)) {
inv[order[i]] = i;
}
for (const auto [_, qs]: query) {
// std::cout << "b " << _.a << ' ' << _.b << '\n';
for (auto [i, j]: qs) {
if (inv[i] > inv[j]) {
std::swap(i, j);
}
S[inv[i] + 1] = S[inv[i]] + W[j];
S[inv[i] + 2] = S[inv[i] + 1] + W[i];
seg.assign(inv[i] + 1, type(S[inv[i] + 1]));
seg.assign(inv[i] + 2, type(S[inv[i] + 2]));
std::swap(inv[i], inv[j]);
}
ans = std::max(ans, seg.fold(0, N + 1).dif);
}
std::cout << ans << '\n';
return 0;
}
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Incorrect |
1 ms |
492 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
3 ms |
876 KB |
Output is correct |
2 |
Correct |
3 ms |
876 KB |
Output is correct |
3 |
Correct |
3 ms |
876 KB |
Output is correct |
4 |
Correct |
3 ms |
876 KB |
Output is correct |
5 |
Correct |
3 ms |
876 KB |
Output is correct |
6 |
Correct |
3 ms |
876 KB |
Output is correct |
7 |
Correct |
3 ms |
876 KB |
Output is correct |
8 |
Correct |
3 ms |
876 KB |
Output is correct |
9 |
Correct |
3 ms |
1004 KB |
Output is correct |
10 |
Correct |
3 ms |
876 KB |
Output is correct |
11 |
Correct |
1 ms |
364 KB |
Output is correct |
12 |
Correct |
1 ms |
364 KB |
Output is correct |
13 |
Correct |
1 ms |
364 KB |
Output is correct |
14 |
Correct |
1 ms |
364 KB |
Output is correct |
15 |
Correct |
1 ms |
364 KB |
Output is correct |
16 |
Correct |
1 ms |
364 KB |
Output is correct |
17 |
Correct |
1 ms |
364 KB |
Output is correct |
18 |
Correct |
1 ms |
364 KB |
Output is correct |
19 |
Correct |
1 ms |
380 KB |
Output is correct |
20 |
Correct |
1 ms |
364 KB |
Output is correct |
21 |
Correct |
3 ms |
876 KB |
Output is correct |
22 |
Correct |
3 ms |
876 KB |
Output is correct |
23 |
Correct |
3 ms |
1004 KB |
Output is correct |
24 |
Correct |
3 ms |
876 KB |
Output is correct |
25 |
Correct |
3 ms |
876 KB |
Output is correct |
26 |
Correct |
3 ms |
876 KB |
Output is correct |
27 |
Correct |
3 ms |
876 KB |
Output is correct |
28 |
Correct |
3 ms |
876 KB |
Output is correct |
29 |
Correct |
3 ms |
876 KB |
Output is correct |
30 |
Correct |
3 ms |
876 KB |
Output is correct |
31 |
Correct |
3 ms |
876 KB |
Output is correct |
32 |
Correct |
3 ms |
876 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
3 ms |
876 KB |
Output is correct |
2 |
Correct |
3 ms |
876 KB |
Output is correct |
3 |
Correct |
3 ms |
876 KB |
Output is correct |
4 |
Correct |
3 ms |
876 KB |
Output is correct |
5 |
Correct |
3 ms |
876 KB |
Output is correct |
6 |
Correct |
3 ms |
876 KB |
Output is correct |
7 |
Correct |
3 ms |
876 KB |
Output is correct |
8 |
Correct |
3 ms |
876 KB |
Output is correct |
9 |
Correct |
3 ms |
1004 KB |
Output is correct |
10 |
Correct |
3 ms |
876 KB |
Output is correct |
11 |
Correct |
1 ms |
364 KB |
Output is correct |
12 |
Correct |
1 ms |
364 KB |
Output is correct |
13 |
Correct |
1 ms |
364 KB |
Output is correct |
14 |
Correct |
1 ms |
364 KB |
Output is correct |
15 |
Correct |
1 ms |
364 KB |
Output is correct |
16 |
Correct |
1 ms |
364 KB |
Output is correct |
17 |
Correct |
1 ms |
364 KB |
Output is correct |
18 |
Correct |
1 ms |
364 KB |
Output is correct |
19 |
Correct |
1 ms |
380 KB |
Output is correct |
20 |
Correct |
1 ms |
364 KB |
Output is correct |
21 |
Correct |
3 ms |
876 KB |
Output is correct |
22 |
Correct |
3 ms |
876 KB |
Output is correct |
23 |
Correct |
3 ms |
1004 KB |
Output is correct |
24 |
Correct |
3 ms |
876 KB |
Output is correct |
25 |
Correct |
3 ms |
876 KB |
Output is correct |
26 |
Correct |
3 ms |
876 KB |
Output is correct |
27 |
Correct |
3 ms |
876 KB |
Output is correct |
28 |
Correct |
3 ms |
876 KB |
Output is correct |
29 |
Correct |
3 ms |
876 KB |
Output is correct |
30 |
Correct |
3 ms |
876 KB |
Output is correct |
31 |
Correct |
3 ms |
876 KB |
Output is correct |
32 |
Correct |
3 ms |
876 KB |
Output is correct |
33 |
Execution timed out |
2084 ms |
159480 KB |
Time limit exceeded |
34 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
3 ms |
876 KB |
Output is correct |
2 |
Correct |
3 ms |
876 KB |
Output is correct |
3 |
Correct |
3 ms |
876 KB |
Output is correct |
4 |
Correct |
3 ms |
876 KB |
Output is correct |
5 |
Correct |
3 ms |
876 KB |
Output is correct |
6 |
Correct |
3 ms |
876 KB |
Output is correct |
7 |
Correct |
3 ms |
876 KB |
Output is correct |
8 |
Correct |
3 ms |
876 KB |
Output is correct |
9 |
Correct |
3 ms |
1004 KB |
Output is correct |
10 |
Correct |
3 ms |
876 KB |
Output is correct |
11 |
Correct |
1 ms |
364 KB |
Output is correct |
12 |
Correct |
1 ms |
364 KB |
Output is correct |
13 |
Correct |
1 ms |
364 KB |
Output is correct |
14 |
Correct |
1 ms |
364 KB |
Output is correct |
15 |
Correct |
1 ms |
364 KB |
Output is correct |
16 |
Correct |
1 ms |
364 KB |
Output is correct |
17 |
Correct |
1 ms |
364 KB |
Output is correct |
18 |
Correct |
1 ms |
364 KB |
Output is correct |
19 |
Correct |
1 ms |
380 KB |
Output is correct |
20 |
Correct |
1 ms |
364 KB |
Output is correct |
21 |
Correct |
3 ms |
876 KB |
Output is correct |
22 |
Correct |
3 ms |
876 KB |
Output is correct |
23 |
Correct |
3 ms |
1004 KB |
Output is correct |
24 |
Correct |
3 ms |
876 KB |
Output is correct |
25 |
Correct |
3 ms |
876 KB |
Output is correct |
26 |
Correct |
3 ms |
876 KB |
Output is correct |
27 |
Correct |
3 ms |
876 KB |
Output is correct |
28 |
Correct |
3 ms |
876 KB |
Output is correct |
29 |
Correct |
3 ms |
876 KB |
Output is correct |
30 |
Correct |
3 ms |
876 KB |
Output is correct |
31 |
Correct |
3 ms |
876 KB |
Output is correct |
32 |
Correct |
3 ms |
876 KB |
Output is correct |
33 |
Execution timed out |
2084 ms |
159480 KB |
Time limit exceeded |
34 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Incorrect |
1 ms |
492 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |