Submission #339370

# Submission time Handle Problem Language Result Execution time Memory
339370 2020-12-25T06:41:33 Z talant117408 Riddick's Cube (IZhO13_riddicks) C++17
100 / 100
838 ms 492 KB
/*
    Code written by Talant I.D.
*/
#pragma GCC optimize("Ofast")
#include <bits/stdc++.h>
//#include <ext/pb_ds/assoc_container.hpp>
 
//using namespace __gnu_pbds;
using namespace std;
 #define int long long
//typedef tree <int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update> indexed_set;
typedef long long ll;
typedef pair <int, int> pii;
typedef pair <ll, ll> pll;
  
#define precision(n) fixed << setprecision(n)
#define pb push_back
#define ub upper_bound
#define lb lower_bound
#define mp make_pair
#define eps (double)1e-9
#define PI 2*acos(0.0)
#define endl "\n"
#define sz(v) int((v).size())
#define all(v) v.begin(),v.end()
#define rall(v) v.rbegin(),v.rend()
#define do_not_disturb ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
#define OK cout << "OK" << endl;
  
inline bool isvowel(char ch){
    ch = tolower(ch);
    return (ch == 'a' || ch == 'e' || ch == 'i' || ch == 'o' || ch == 'u');
}
  
inline bool isprime(int n){
    if(n < 2 || (n%2 == 0 && n != 2)) return false;
    for(int i = 3; i*i <= n; i++)
        if(n%i == 0) return false;
    return true;
}
 
class Union{
    private:
        vector <int> saizu, link;
    public:
        Union(int n){
            saizu.assign(n, 1); link.resize(n); 
            iota(all(link), 0);
        }
        int find(int n){
            if(link[n] == n) return n;
            return link[n] = find(link[n]);
        }
        int same(int a, int b){
            return find(a) == find(b);
        }
        void unite(int a, int b){
            if(same(a, b)) return;
             
            a = find(a); b = find(b);
            if(saizu[a] < saizu[b]) swap(a, b);
             
            saizu[a] += saizu[b];
            link[b] = a;
        }
        int getsize(int a){
            return saizu[find(a)];
        }
};
 
const int mod = 1e9+7;
 
ll mode(ll a){
    a %= mod;
    if(a < 0) a += mod;
    return a;
}
 
ll subt(ll a, ll b){
    return mode(mode(a)-mode(b));
}
 
ll add(ll a, ll b){
    return mode(mode(a)+mode(b));
}
 
ll mult(ll a, ll b){
    return mode(mode(a)*mode(b));
}
 
ll binpow(ll a, ll b){
    ll res = 1;
    while(b){
        if(b&1) res = mult(res, a);
        a = mult(a, a);
        b >>= 1;
    }
    return res;
}

int n, m, grid[5][5], grid2[5][5], grid3[5][5];

inline int check(int i1, int i2, int i3, int i4, int i5, int j1, int j2, int j3, int j4, int j5){
    int i, j;
    for(i = 0; i < n; i++)
        grid2[(i+i1)-(i+i1 >= n ? n : 0)][0] = grid[i][0];
    if(m > 1)
        for(i = 0; i < n; i++)
            grid2[(i+i2)-(i+i2 >= n ? n : 0)][1] = grid[i][1];
    if(m > 2)
        for(i = 0; i < n; i++)
            grid2[(i+i3)-(i+i3 >= n ? n : 0)][2] = grid[i][2];
    if(m > 3)
        for(i = 0; i < n; i++)
            grid2[(i+i4)-(i+i4 >= n ? n : 0)][3] = grid[i][3];
    if(m > 4)
        for(i = 0; i < n; i++)
            grid2[(i+i5)-(i+i5 >= n ? n : 0)][4] = grid[i][4];
            
    for(j = 0; j < m; j++)
        grid3[0][(j+j1)-(j+j1 >= m ? m : 0)] = grid2[0][j];
    if(n > 1)
        for(j = 0; j < m; j++)
            grid3[1][(j+j2)-(j+j2 >= m ? m : 0)] = grid2[1][j];
    if(n > 2)
        for(j = 0; j < m; j++)
            grid3[2][(j+j3)-(j+j3 >= m ? m : 0)] = grid2[2][j];
    if(n > 3)
        for(j = 0; j < m; j++)
            grid3[3][(j+j4)-(j+j4 >= m ? m : 0)] = grid2[3][j];
    if(n > 4)
        for(j = 0; j < m; j++)
            grid3[4][(j+j5)-(j+j5 >= m ? m : 0)] = grid2[4][j];
    
    bool flag1 = 1, flag2 = 1;
    for(i = 0; i < n; i++){
        bool flag = 0;
        for(j = 1; j < m; j++){
            if(grid3[i][j] != grid3[i][j-1]){
                flag = 1;
                break;
            }
        }
        if(flag){
            flag1 = 0;
            break;
        }
    }
    for(j = 0; j < m; j++){
        bool flag = 0;
        for(i = 1; i < n; i++){
            if(grid3[i][j] != grid3[i-1][j]){
                flag = 1;
                break;
            }
        }
        if(flag){
            flag2 = 0;
            break;
        }
    }
    
    if(flag1 || flag2){
        int ansi[5], ansj[5];
        for(i = 0; i < 5; i++) ansi[i] = ansj[i] = 0;
        
        ansi[0] = min(i1, n-i1);
        if(m > 1) ansi[1] = min(i2, n-i2);
        if(m > 2) ansi[2] = min(i3, n-i3);
        if(m > 3) ansi[3] = min(i4, n-i4);
        if(m > 4) ansi[4] = min(i5, n-i5);
        
        ansj[0] = min(j1, m-j1);
        if(n > 1) ansj[1] = min(j2, m-j2);
        if(n > 2) ansj[2] = min(j3, m-j3);
        if(n > 3) ansj[3] = min(j4, m-j4);
        if(n > 4) ansj[4] = min(j5, m-j5);
        
        int sum = 0;
        for(i = 0; i < 5; i++){
            sum += ansi[i]+ansj[i];
        }
        return sum;
    }
    
    return 100500;
}

main(){
    do_not_disturb
    
    int i, j;
    cin >> n >> m;
    for(i = 0; i < n; i++){
        for(j = 0; j < m; j++){
            cin >> grid[i][j];
        }
    }
    
    int ans = 100500;
    for(int i1 = 0; i1 < n; i1++)  
        for(int i2 = 0; i2 < n; i2++)  
            for(int i3 = 0; i3 < n; i3++)  
                for(int i4 = 0; i4 < n; i4++)  
                    for(int i5 = 0; i5 < n; i5++)  
                        for(int j1 = 0; j1 < m; j1++)  
                            for(int j2 = 0; j2 < m; j2++)  
                                for(int j3 = 0; j3 < m; j3++)  
                                    for(int j4 = 0; j4 < m; j4++)
                                        for(int j5 = 0; j5 < m; j5++)
                                            ans = min(ans, check(i1, i2, i3, i4, i5, j1, j2, j3, j4, j5));
    
    cout << ans;
    
    return 0;
}

Compilation message

riddicks.cpp:189:6: warning: ISO C++ forbids declaration of 'main' with no type [-Wreturn-type]
  189 | main(){
      |      ^
# Verdict Execution time Memory Grader output
1 Correct 1 ms 364 KB Output is correct
2 Correct 0 ms 364 KB Output is correct
3 Correct 1 ms 364 KB Output is correct
4 Correct 4 ms 384 KB Output is correct
5 Correct 5 ms 364 KB Output is correct
6 Correct 11 ms 364 KB Output is correct
7 Correct 12 ms 364 KB Output is correct
8 Correct 58 ms 364 KB Output is correct
9 Correct 207 ms 364 KB Output is correct
10 Correct 231 ms 492 KB Output is correct
11 Correct 206 ms 364 KB Output is correct
12 Correct 232 ms 492 KB Output is correct
13 Correct 833 ms 492 KB Output is correct
14 Correct 827 ms 388 KB Output is correct
15 Correct 838 ms 492 KB Output is correct
16 Correct 825 ms 492 KB Output is correct
17 Correct 828 ms 492 KB Output is correct
18 Correct 829 ms 492 KB Output is correct
19 Correct 828 ms 492 KB Output is correct
20 Correct 826 ms 492 KB Output is correct