답안 #337200

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
337200 2020-12-18T20:07:12 Z 12tqian Bulldozer (JOI17_bulldozer) C++17
25 / 100
2000 ms 197572 KB
#pragma GCC target ("avx2")
#pragma GCC optimization ("O3")
#pragma GCC optimization ("unroll-loops")
 
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <deque>
#include <iostream>
#include <iomanip>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <string>
#include <unordered_map>
#include <vector>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
 
using namespace std;
using namespace __gnu_pbds;
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;
 
typedef long long ll;
typedef long double ld;
typedef double db;
typedef string str;
 
typedef pair<int, int> pi;
typedef pair<ll, ll> pl;
typedef pair<db, db> pd;
 
typedef vector<int> vi;
typedef vector<bool> vb;
typedef vector<ll> vl;
typedef vector<db> vd;
typedef vector<str> vs;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<pd> vpd;
 
#define mp make_pair
#define f first
#define s second
#define sz(x) (int) (x).size()
#define all(x) begin(x), end(x)
#define rall(x) (x).rbegin(), (x).rend()
#define sor(x) sort(all(x))
#define rsz resize
#define resz resize
#define ins insert
#define ft front()
#define bk back()
#define pf push_front
#define pb push_back
#define eb emplace_back
#define lb lower_bound
#define ub upper_bound
 
#define f1r(i, a, b) for(int i = (a); i < (b); ++i)
#define f0r(i, a) f1r(i, 0, a)
#define FOR(i, a, b) for (int i = (a); i < (b); ++i)
#define F0R(i, a) FOR(i,0,a)
#define ROF(i, a, b) for (int i = (b) - 1; i >= (a); --i)
#define R0F(i, a) ROF(i, 0, a)
#define trav(a, x) for (auto& a : x)
 
mt19937 rng((uint32_t) chrono::steady_clock::now().time_since_epoch().count());
 
template<class T> bool ckmin(T& a, const T& b) { return b < a ? a = b, 1 : 0; }
template<class T> bool ckmax(T& a, const T& b) { return a < b ? a = b, 1 : 0; }
template<class T> using V = vector<T>;
 
#ifdef LOCAL
#define dbg(...) debug(#__VA_ARGS__, __VA_ARGS__);
#else
#define dbg(...) 17;
#endif
 
template<typename T, typename S> ostream& operator << (ostream &os, const pair<T, S> &p) { return os << "(" << p.first << ", " << p.second << ")"; }
template<typename C, typename T = decay<decltype(*begin(declval<C>()))>, typename enable_if<!is_same<C, string>::value>::type* = nullptr>
ostream& operator << (ostream &os, const C &c) { bool f = true; os << "{"; for (const auto &x : c) { if (!f) os << ", "; f = false; os << x; } return os << "}"; }
template<typename T> void debug(string s, T x) { cerr << s << " = " << x << "\n"; }
template<typename T, typename... Args> void debug(string s, T x, Args... args) { cerr << s.substr(0, s.find(',')) << " = " << x << " | "; debug(s.substr(s.find(',') + 2), args...); }
 
constexpr int pct(int x) { return __builtin_popcount(x); }
constexpr int bits(int x) { return 31 - __builtin_clz(x); } // floor(log2(x))
 
namespace input {
    template<class T> void re(complex<T>& x);
    template<class T1, class T2> void re(pair<T1, T2>& p);
    template<class T> void re(vector<T>& a);
    template<class T, int SZ> void re(array<T, SZ>& a);
    template<class T> void re(T& x) { cin >> x; }
    void re(double& x) { string t; re(t); x = stod(t); }
    void re(ld& x) { string t; re(t); x = stold(t); }
    template<class T, class... Ts> void re(T& t, Ts&... ts) {
        re(t); re(ts...); }
    template<class T> void re(complex<T>& x) { T a, b; re(a, b); x = cd(a, b); }
    template<class T1, class T2> void re(pair<T1, T2>& p) { re(p.f, p.s); }
    template<class T> void re(vector<T>& a) { F0R(i, sz(a)) re(a[i]); }
    template<class T, int SZ> void re(array<T, SZ>& a) { F0R(i, SZ) re(a[i]); }
}
 
using namespace input;
 
namespace output {
    void pr(int x) { cout << x; }
    void pr(long x) { cout << x; }
    void pr(ll x) { cout << x; }
    void pr(unsigned x) { cout << x; }
    void pr(unsigned long x) { cout << x; }
    void pr(unsigned long long x) { cout << x; }
    void pr(float x) { cout << x; }
    void pr(double x) { cout << x; }
    void pr(ld x) { cout << x; }
    void pr(char x) { cout << x; }
    void pr(const char* x) { cout << x; }
    void pr(const string& x) { cout << x; }
    void pr(bool x) { pr(x ? "true" : "false"); }
    template<class T> void pr(const complex<T>& x) { cout << x; }
    template<class T1, class T2> void pr(const pair<T1, T2>& x);
    template<class T> void pr(const T& x);
    template<class T, class... Ts> void pr(const T& t, const Ts&... ts) {
        pr(t); pr(ts...); }
    template<class T1, class T2> void pr(const pair<T1,T2>& x) {
        pr("{", x.f, ", ", x.s, "}"); }
    template<class T> void pr(const T& x) {
        pr("{"); // const iterator needed for vector<bool>
        bool fst = 1; for (const auto& a: x) pr(!fst ? ", " : "", a), fst = 0;
        pr("}"); }
    void ps() { pr("\n"); } // print w/ spaces
    template<class T, class... Ts> void ps(const T& t, const Ts&... ts) {
        pr(t); if (sizeof...(ts)) pr(" "); ps(ts...); }
    void pc() { pr("]\n"); } // debug w/ commas
    template<class T, class... Ts> void pc(const T& t, const Ts&... ts) {
        pr(t); if (sizeof...(ts)) pr(", "); pc(ts...); }
}
 
using namespace output;
 
namespace io {
    void setIn(string s) { freopen(s.c_str(), "r", stdin); }
    void setOut(string s) { freopen(s.c_str(), "w", stdout); }
    void setIO(string s = "") {
        cin.sync_with_stdio(0); cin.tie(0);
        if (sz(s)) { setIn(s + ".in"), setOut(s + ".out"); }
    }
}
 
using namespace io;
 
const int MOD = 1e9 + 7; // 998244353;
const ld PI = acos((ld) -1);
 
typedef std::decay <decltype(MOD)>::type mod_t;
struct mi {
    mod_t val;
    explicit operator mod_t() const { return val; }
    mi() { val = 0; }
    mi(const long long& v) {
        val = (-MOD <= v && v <= MOD) ? v : v % MOD;
        if (val < 0) val += MOD; }
    friend std::istream& operator >> (std::istream& in, mi& a) { 
        long long x; std::cin >> x; a = mi(x); return in; }
    friend std::ostream& operator << (std::ostream& os, const mi& a) { return os << a.val; }
    friend void pr(const mi& a) { pr(a.val); }
    friend void re(mi& a) { ll x; re(x); a = mi(x); }
    friend bool operator == (const mi& a, const mi& b) { return a.val == b.val; }
    friend bool operator != (const mi& a, const mi& b) { return !(a == b); }    
    friend bool operator < (const mi& a, const mi& b) { return a.val < b.val; }
    friend bool operator > (const mi& a, const mi& b) { return a.val > b.val; }
    friend bool operator <= (const mi& a, const mi& b) { return a.val <= b.val; }
    friend bool operator >= (const mi& a, const mi& b) { return a.val >= b.val; }
    mi operator - () const { return mi(-val); }
    mi& operator += (const mi& m) {
        if ((val += m.val) >= MOD) val -= MOD;
        return *this; }
    mi& operator -= (const mi& m) {
        if ((val -= m.val) < 0) val += MOD;
        return *this; }
    mi& operator *= (const mi& m) { val = (long long) val * m.val % MOD;
        return *this; }
    friend mi pow(mi a, long long p) {
        mi ans = 1; assert(p >= 0);
        for (; p; p /= 2, a *= a) if (p & 1) ans *= a;
        return ans; }
    friend mi inv(const mi& a) { assert(a != 0); return pow(a, MOD - 2); }
    mi& operator /= (const mi& m) { return (*this) *= inv(m); }
    friend mi operator + (mi a, const mi& b) { return a += b; }
    friend mi operator - (mi a, const mi& b) { return a -= b; }
    friend mi operator * (mi a, const mi& b) { return a *= b; }
    friend mi operator / (mi a, const mi& b) { return a /= b; }
};
typedef pair<mi, mi> pmi;
typedef vector<mi> vmi;
typedef vector<pmi> vpmi;
const ll INF = 1e14;
struct Frac {
    long long n, d;
    Frac(long long _n, long long _d) {
        n = _n, d = _d;
        long long g = std::__gcd(n, d); n /= g, d /= g;
        if (d < 0) n *= -1, d *= -1;
    }
    Frac(long long _n) : Frac(_n, 1) {}
    Frac() : Frac(0) {}
    friend void pr(const Frac& a) { pr(a.n,"/",a.d); }
    friend Frac abs(Frac F) { return Frac(abs(F.n), F.d); }
    friend bool operator < (const Frac& l, const Frac& r) { return l.n * r.d < r.n * l.d; }
    friend bool operator <= (const Frac& l, const Frac& r) { return l.n * r.d <= r.n * l.d; }
    friend bool operator > (const Frac& l, const Frac& r) { return l.n * r.d > r.n * l.d; }
    friend bool operator >= (const Frac& l, const Frac& r) { return l.n * r.d >= r.n * l.d; }
    friend bool operator == (const Frac& l, const Frac& r) { return l.n == r.n && l.d == r.d; }
    friend bool operator != (const Frac& l, const Frac& r) { return !(l == r); }
    Frac operator - () const { return Frac(-n, d); }
    friend Frac operator + (const Frac& l, const Frac& r) { return Frac(l.n * r.d + r.n * l.d, l.d * r.d); }
    friend Frac operator - (const Frac& l, const Frac& r) { return Frac(l.n * r.d - r.n * l.d, l.d * r.d); }
    friend Frac operator * (const Frac& l, const Frac& r) { return Frac(l.n * r.n, l.d * r.d); }
    friend Frac operator * (const Frac& l, int r) { return l * Frac(r, 1); }
    friend Frac operator * (int r, const Frac& l) { return l * r; }
    friend Frac operator / (const Frac& l, const Frac& r) { return l * Frac(r.d, r.n); }
    friend Frac operator / (const Frac& l, const int& r) { return l / Frac(r, 1); }
    friend Frac operator / (const int& l, const Frac& r) { return Frac(l, 1) / r; }
    friend Frac& operator += (Frac& l, const Frac& r) { return l = l + r; }
    friend Frac& operator -= (Frac& l, const Frac& r) { return l = l - r; }
    template <class T> friend Frac& operator *= (Frac& l, const T& r) { return l = l * r; }
    template <class T> friend Frac& operator /= (Frac& l, const T& r) { return l = l / r; }
    friend std::ostream& operator << (std::ostream& os, const Frac& a) { return os << a.n << "/" << a.d; }
};
const int N = 4005;
template<class T> struct Seg { // comb(ID,b) = b
    T comb1(T a, T b) { return min(a,b); } 
    T comb2(T a, T b) { return max(a,b); }
    ll seg1[N], seg2[N];
    int n; 
    void init(int _n) { 
        n = _n;
        f0r(i, N) seg1[i] = INF, seg2[i] = -INF;
    }
    void pull(int p) { 
        seg1[p] = comb1(seg1[2*p],seg1[2*p+1]); 
        seg2[p] = comb2(seg2[2*p],seg2[2*p+1]); 
    }
    void upd(int p, T val) { // set val at position p
        seg1[p + n] = seg2[p + n] = val; p += n;
        for (p /= 2; p; p /= 2) pull(p); }
    T query1(int l, int r) { // sum on interval [l, r]
        if (l>r || r<0 || l<0) return 0;
        T ra = INF, rb = INF; 
        for (l += n, r += n+1; l < r; l /= 2, r /= 2) {
            if (l&1) ra = comb1(ra,seg1[l++]);
            if (r&1) rb = comb1(seg1[--r],rb);
        }
        return comb1(ra,rb);
    }
    T query2(int l, int r) { // sum on interval [l, r]
        if (l>r || r<0 || l<0) return 0;
        T ra = -INF, rb = -INF; 
        for (l += n, r += n+1; l < r; l /= 2, r /= 2) {
            if (l&1) ra = comb2(ra,seg2[l++]);
            if (r&1) rb = comb2(seg2[--r],rb);
        }
        return comb2(ra,rb);
    }
};
pl pts[N];
ll w[N];
Seg<ll> seg;
int main() {
    // setIO("file");
    setIO("");
    int n; re(n);
    pts[0] = {INF,INF};
    f1r(i, 1, n+1) re(pts[i].f, pts[i].s, w[i]);
    vi id(n+1), tmp(n+1);
    iota(tmp.begin()+1, tmp.end(), 1);
    sort(tmp.begin()+1, tmp.end(), [&](int x, int y) {
        if (pts[x].f != pts[y].f) 
            return pts[x].f < pts[y].f;
        return pts[x].s < pts[y].s;
    });
    f1r(i, 1, n+1) id[tmp[i]] = i;
    seg.init(n+1);
    auto ask = [&](int id) -> ll {
        ll val1 = seg.seg1[id+n+1];
        ll val2 = seg.query1(0,id);
        ll val3 = seg.query2(id,n);
        return max(val1-val2,val3-val1);
    };
    ll run = 0;
    ll ans = 0;
    seg.upd(0, 0);
    f1r(i, 1, n+1) {
        run += w[tmp[i]];
        seg.upd(i, run);
        if (pts[i].f != pts[i-1].f) {
            ckmax(ans,ask(i));
        }
    }
    vector<pair<ld,pair<ld,int>>> v;
    f1r(i, 1, n+1) {
        f1r(j, i+1, n+1) {
            ll num = pts[j].s-pts[i].s;
            ll den = pts[j].f-pts[i].f; 
            ld s = (den == 0 ? -INF : (ld) num/den);
            ld y =  pts[i].f;
            if (den != 0) {
                y = (ld) (pts[i].s*(pts[j].f-pts[i].f)+pts[i].f*(pts[i].s-pts[j].s))/(pts[j].f-pts[i].f);
            }
            v.push_back({s,{y,i}});
            v.push_back({s,{y,j}});
        }
    }
    sort(all(v));
    v.erase(unique(all(v)), v.end());
    int it1 = 0;
    int it2 = 0;
    vector<pair<Frac,int>> container;
    vi vals;
    vi todo;
    int sum = 0;
    while (it1 != sz(v)) {
        todo.clear();
        container.clear();
        container.push_back(v[it1].s);
        while (it2<sz(v)-1&&v[it1].f == v[it2+1].f) it2++, container.push_back(v[it2].s);
        int i1 = 0;
        int i2 = 0;
        while (i1 != sz(container)) {
            vals.clear();
            vals.push_back(container[i1].s);
            while (i2<sz(container)-1 && container[i1].f==container[i2+1].f) i2++, vals.push_back(container[i2].s);
            int mn = 1e9;
            for (int x : vals) ckmin(mn, id[x]); 
            ll bef = seg.seg1[mn-1+n+1];
            sum += sz(vals);
            if (v[it1].f < 0) {
                sort(all(vals), [&](int& x, int& y) {
                    return pts[x].s < pts[y].s;
                });
            } else { 
                sort(all(vals), [&](int& x, int& y) {
                    return pts[x].f > pts[y].f;
                });
            }   
            for (int x : vals) {
                bef += w[x];
                id[x] = mn++;
                seg.upd(id[x], bef);
                todo.eb(x);
            }
            for (int x : todo)
                ckmax(ans, ask(id[x]));
            i1 = ++i2;
        }
        it1 = ++it2;
    }
    ps(ans);
    return 0;
}

Compilation message

bulldozer.cpp:2: warning: ignoring #pragma GCC optimization [-Wunknown-pragmas]
    2 | #pragma GCC optimization ("O3")
      | 
bulldozer.cpp:3: warning: ignoring #pragma GCC optimization [-Wunknown-pragmas]
    3 | #pragma GCC optimization ("unroll-loops")
      | 
bulldozer.cpp: In function 'void io::setIn(std::string)':
bulldozer.cpp:154:35: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
  154 |     void setIn(string s) { freopen(s.c_str(), "r", stdin); }
      |                            ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~
bulldozer.cpp: In function 'void io::setOut(std::string)':
bulldozer.cpp:155:36: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
  155 |     void setOut(string s) { freopen(s.c_str(), "w", stdout); }
      |                             ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 3 ms 1388 KB Output is correct
2 Correct 3 ms 1388 KB Output is correct
3 Correct 3 ms 1388 KB Output is correct
4 Correct 3 ms 1388 KB Output is correct
5 Correct 3 ms 1388 KB Output is correct
6 Correct 3 ms 1408 KB Output is correct
7 Correct 3 ms 1388 KB Output is correct
8 Correct 3 ms 1388 KB Output is correct
9 Correct 3 ms 1388 KB Output is correct
10 Correct 3 ms 1388 KB Output is correct
11 Correct 1 ms 364 KB Output is correct
12 Correct 1 ms 364 KB Output is correct
13 Correct 1 ms 364 KB Output is correct
14 Correct 1 ms 384 KB Output is correct
15 Correct 1 ms 364 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 4 ms 1388 KB Output is correct
2 Correct 4 ms 1388 KB Output is correct
3 Correct 4 ms 1388 KB Output is correct
4 Correct 4 ms 1408 KB Output is correct
5 Correct 4 ms 1388 KB Output is correct
6 Correct 5 ms 1388 KB Output is correct
7 Correct 4 ms 1388 KB Output is correct
8 Correct 4 ms 1388 KB Output is correct
9 Correct 4 ms 1388 KB Output is correct
10 Correct 4 ms 1388 KB Output is correct
11 Correct 0 ms 364 KB Output is correct
12 Correct 1 ms 384 KB Output is correct
13 Correct 1 ms 364 KB Output is correct
14 Correct 1 ms 364 KB Output is correct
15 Correct 1 ms 364 KB Output is correct
16 Correct 1 ms 364 KB Output is correct
17 Correct 1 ms 364 KB Output is correct
18 Correct 1 ms 364 KB Output is correct
19 Correct 1 ms 364 KB Output is correct
20 Correct 0 ms 364 KB Output is correct
21 Correct 4 ms 1388 KB Output is correct
22 Correct 4 ms 1388 KB Output is correct
23 Correct 5 ms 1388 KB Output is correct
24 Correct 4 ms 1388 KB Output is correct
25 Correct 4 ms 1388 KB Output is correct
26 Correct 4 ms 1388 KB Output is correct
27 Correct 4 ms 1388 KB Output is correct
28 Correct 4 ms 1388 KB Output is correct
29 Correct 4 ms 1388 KB Output is correct
30 Correct 4 ms 1280 KB Output is correct
31 Correct 4 ms 1388 KB Output is correct
32 Correct 4 ms 1388 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 4 ms 1388 KB Output is correct
2 Correct 4 ms 1388 KB Output is correct
3 Correct 4 ms 1388 KB Output is correct
4 Correct 4 ms 1408 KB Output is correct
5 Correct 4 ms 1388 KB Output is correct
6 Correct 5 ms 1388 KB Output is correct
7 Correct 4 ms 1388 KB Output is correct
8 Correct 4 ms 1388 KB Output is correct
9 Correct 4 ms 1388 KB Output is correct
10 Correct 4 ms 1388 KB Output is correct
11 Correct 0 ms 364 KB Output is correct
12 Correct 1 ms 384 KB Output is correct
13 Correct 1 ms 364 KB Output is correct
14 Correct 1 ms 364 KB Output is correct
15 Correct 1 ms 364 KB Output is correct
16 Correct 1 ms 364 KB Output is correct
17 Correct 1 ms 364 KB Output is correct
18 Correct 1 ms 364 KB Output is correct
19 Correct 1 ms 364 KB Output is correct
20 Correct 0 ms 364 KB Output is correct
21 Correct 4 ms 1388 KB Output is correct
22 Correct 4 ms 1388 KB Output is correct
23 Correct 5 ms 1388 KB Output is correct
24 Correct 4 ms 1388 KB Output is correct
25 Correct 4 ms 1388 KB Output is correct
26 Correct 4 ms 1388 KB Output is correct
27 Correct 4 ms 1388 KB Output is correct
28 Correct 4 ms 1388 KB Output is correct
29 Correct 4 ms 1388 KB Output is correct
30 Correct 4 ms 1280 KB Output is correct
31 Correct 4 ms 1388 KB Output is correct
32 Correct 4 ms 1388 KB Output is correct
33 Execution timed out 2097 ms 197572 KB Time limit exceeded
34 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 4 ms 1388 KB Output is correct
2 Correct 4 ms 1388 KB Output is correct
3 Correct 4 ms 1388 KB Output is correct
4 Correct 4 ms 1408 KB Output is correct
5 Correct 4 ms 1388 KB Output is correct
6 Correct 5 ms 1388 KB Output is correct
7 Correct 4 ms 1388 KB Output is correct
8 Correct 4 ms 1388 KB Output is correct
9 Correct 4 ms 1388 KB Output is correct
10 Correct 4 ms 1388 KB Output is correct
11 Correct 0 ms 364 KB Output is correct
12 Correct 1 ms 384 KB Output is correct
13 Correct 1 ms 364 KB Output is correct
14 Correct 1 ms 364 KB Output is correct
15 Correct 1 ms 364 KB Output is correct
16 Correct 1 ms 364 KB Output is correct
17 Correct 1 ms 364 KB Output is correct
18 Correct 1 ms 364 KB Output is correct
19 Correct 1 ms 364 KB Output is correct
20 Correct 0 ms 364 KB Output is correct
21 Correct 4 ms 1388 KB Output is correct
22 Correct 4 ms 1388 KB Output is correct
23 Correct 5 ms 1388 KB Output is correct
24 Correct 4 ms 1388 KB Output is correct
25 Correct 4 ms 1388 KB Output is correct
26 Correct 4 ms 1388 KB Output is correct
27 Correct 4 ms 1388 KB Output is correct
28 Correct 4 ms 1388 KB Output is correct
29 Correct 4 ms 1388 KB Output is correct
30 Correct 4 ms 1280 KB Output is correct
31 Correct 4 ms 1388 KB Output is correct
32 Correct 4 ms 1388 KB Output is correct
33 Execution timed out 2097 ms 197572 KB Time limit exceeded
34 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 3 ms 1388 KB Output is correct
2 Correct 3 ms 1388 KB Output is correct
3 Correct 3 ms 1388 KB Output is correct
4 Correct 3 ms 1388 KB Output is correct
5 Correct 3 ms 1388 KB Output is correct
6 Correct 3 ms 1408 KB Output is correct
7 Correct 3 ms 1388 KB Output is correct
8 Correct 3 ms 1388 KB Output is correct
9 Correct 3 ms 1388 KB Output is correct
10 Correct 3 ms 1388 KB Output is correct
11 Correct 1 ms 364 KB Output is correct
12 Correct 1 ms 364 KB Output is correct
13 Correct 1 ms 364 KB Output is correct
14 Correct 1 ms 384 KB Output is correct
15 Correct 1 ms 364 KB Output is correct
16 Correct 4 ms 1388 KB Output is correct
17 Correct 4 ms 1388 KB Output is correct
18 Correct 4 ms 1388 KB Output is correct
19 Correct 4 ms 1408 KB Output is correct
20 Correct 4 ms 1388 KB Output is correct
21 Correct 5 ms 1388 KB Output is correct
22 Correct 4 ms 1388 KB Output is correct
23 Correct 4 ms 1388 KB Output is correct
24 Correct 4 ms 1388 KB Output is correct
25 Correct 4 ms 1388 KB Output is correct
26 Correct 0 ms 364 KB Output is correct
27 Correct 1 ms 384 KB Output is correct
28 Correct 1 ms 364 KB Output is correct
29 Correct 1 ms 364 KB Output is correct
30 Correct 1 ms 364 KB Output is correct
31 Correct 1 ms 364 KB Output is correct
32 Correct 1 ms 364 KB Output is correct
33 Correct 1 ms 364 KB Output is correct
34 Correct 1 ms 364 KB Output is correct
35 Correct 0 ms 364 KB Output is correct
36 Correct 4 ms 1388 KB Output is correct
37 Correct 4 ms 1388 KB Output is correct
38 Correct 5 ms 1388 KB Output is correct
39 Correct 4 ms 1388 KB Output is correct
40 Correct 4 ms 1388 KB Output is correct
41 Correct 4 ms 1388 KB Output is correct
42 Correct 4 ms 1388 KB Output is correct
43 Correct 4 ms 1388 KB Output is correct
44 Correct 4 ms 1388 KB Output is correct
45 Correct 4 ms 1280 KB Output is correct
46 Correct 4 ms 1388 KB Output is correct
47 Correct 4 ms 1388 KB Output is correct
48 Execution timed out 2097 ms 197572 KB Time limit exceeded
49 Halted 0 ms 0 KB -