/* Transition from k to k+1 will always be
* ...0101000... to ...0101010..., or
* ...0101010... to ...1010101...
* Thus, store the possible states that it can go in a pq
*/
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef long double ld;
#define FOR(i, a, b) for(ll i = (ll)a; i <= (ll)b; i++)
#define DEC(i, a, b) for(ll i = (ll)a; i >= (ll)b; i--)
typedef pair<ll, ll> pi;
typedef pair<pi, ll> pii;
typedef pair<ll, pi> ipi;
typedef pair<pi, pi> pipi;
#define f first
#define s second
typedef vector<ll> vi;
typedef vector<pi> vpi;
typedef vector<pii> vpii;
#define pb push_back
#define pf push_front
#define all(v) v.begin(), v.end()
#define size(v) (ll) v.size()
#define disc(v) sort(all(v)); v.resize(unique(all(v)) - v.begin());
#define INF (ll) 1e9 + 100
#define LLINF (ll) 1e18
#define fastio ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0)
#define sandybridge __attribute__((optimize("Ofast"), target("arch=sandybridge")))
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); //can be used by calling rng() or shuffle(A, A+n, rng)
inline ll rand(ll x, ll y) { ++y; return (rng() % (y-x)) + x; } //inclusivesss
ll n, arr[200005], ss[200005], p[200005], L[200005], R[200005], ans;
bool vis[200005];
priority_queue<ipi> pq;
inline ll getans(ll x, ll y) {
return (y % 2 ? ss[y] - ss[x-1] : ss[x-1] - ss[y]);
}
ll fs(ll x) {
if (p[x] == x) return x;
return p[x] = fs(p[x]);
}
int main() {
fastio; cin >> n;
FOR(i, 1, n) {
cin >> arr[i];
ss[i] = ss[i-1] + (i % 2 ? arr[i] : -arr[i]);
p[i] = L[i] = R[i] = i;
pq.push(ipi(arr[i], pi(i, i)));
}
FOR(i, 1, (n+1)/2) {
ll l, r;
while (true) {
l = pq.top().s.f;
r = pq.top().s.s;
pq.pop();
if (!vis[l-1] and !vis[r+1]) break;
}
ans += getans(l, r);
cout << ans << "\n";
vis[l] = 1;
vis[r] = 1;
// because at every step you expand at most 1
// you only need to set vis of l and r as
// all the intermediate nodes must have been set before
ll par;
if (l == r) par = fs(l);
else {
par = fs(l+1);
p[fs(l)] = par;
p[fs(r)] = par;
L[par] = l, R[par] = r;
}
if (vis[r+2]) {
R[par] = R[fs(r+2)];
p[fs(r+2)] = par;
}
if (l > 1 and vis[l-2]) {
L[par] = L[fs(l-2)];
p[fs(l-2)] = par;
}
if (L[par] > 1 and R[par] < n) pq.push(ipi(getans(L[par]-1, R[par]+1), pi(L[par]-1, R[par]+1)));
}
}
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1 ms |
620 KB |
Output is correct |
2 |
Correct |
1 ms |
620 KB |
Output is correct |
3 |
Correct |
2 ms |
620 KB |
Output is correct |
4 |
Correct |
1 ms |
620 KB |
Output is correct |
5 |
Correct |
1 ms |
620 KB |
Output is correct |
6 |
Correct |
1 ms |
620 KB |
Output is correct |
7 |
Correct |
1 ms |
620 KB |
Output is correct |
8 |
Correct |
1 ms |
620 KB |
Output is correct |
9 |
Correct |
1 ms |
620 KB |
Output is correct |
10 |
Correct |
1 ms |
620 KB |
Output is correct |
11 |
Correct |
1 ms |
620 KB |
Output is correct |
12 |
Correct |
1 ms |
620 KB |
Output is correct |
13 |
Correct |
1 ms |
620 KB |
Output is correct |
14 |
Correct |
1 ms |
620 KB |
Output is correct |
15 |
Correct |
2 ms |
620 KB |
Output is correct |
16 |
Correct |
2 ms |
620 KB |
Output is correct |
17 |
Correct |
2 ms |
620 KB |
Output is correct |
18 |
Correct |
1 ms |
620 KB |
Output is correct |
19 |
Correct |
1 ms |
620 KB |
Output is correct |
20 |
Correct |
1 ms |
620 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1 ms |
620 KB |
Output is correct |
2 |
Correct |
1 ms |
620 KB |
Output is correct |
3 |
Correct |
2 ms |
620 KB |
Output is correct |
4 |
Correct |
1 ms |
620 KB |
Output is correct |
5 |
Correct |
1 ms |
620 KB |
Output is correct |
6 |
Correct |
1 ms |
620 KB |
Output is correct |
7 |
Correct |
1 ms |
620 KB |
Output is correct |
8 |
Correct |
1 ms |
620 KB |
Output is correct |
9 |
Correct |
1 ms |
620 KB |
Output is correct |
10 |
Correct |
1 ms |
620 KB |
Output is correct |
11 |
Correct |
1 ms |
620 KB |
Output is correct |
12 |
Correct |
1 ms |
620 KB |
Output is correct |
13 |
Correct |
1 ms |
620 KB |
Output is correct |
14 |
Correct |
1 ms |
620 KB |
Output is correct |
15 |
Correct |
2 ms |
620 KB |
Output is correct |
16 |
Correct |
2 ms |
620 KB |
Output is correct |
17 |
Correct |
2 ms |
620 KB |
Output is correct |
18 |
Correct |
1 ms |
620 KB |
Output is correct |
19 |
Correct |
1 ms |
620 KB |
Output is correct |
20 |
Correct |
1 ms |
620 KB |
Output is correct |
21 |
Correct |
166 ms |
14672 KB |
Output is correct |
22 |
Correct |
164 ms |
14672 KB |
Output is correct |
23 |
Correct |
166 ms |
14800 KB |
Output is correct |
24 |
Correct |
111 ms |
14672 KB |
Output is correct |
25 |
Correct |
111 ms |
14712 KB |
Output is correct |
26 |
Correct |
112 ms |
14672 KB |
Output is correct |
27 |
Correct |
121 ms |
14800 KB |
Output is correct |
28 |
Correct |
120 ms |
14672 KB |
Output is correct |
29 |
Correct |
123 ms |
14800 KB |
Output is correct |
30 |
Correct |
124 ms |
14672 KB |
Output is correct |
31 |
Correct |
123 ms |
14672 KB |
Output is correct |
32 |
Correct |
123 ms |
14672 KB |
Output is correct |
33 |
Correct |
140 ms |
14800 KB |
Output is correct |
34 |
Correct |
136 ms |
14672 KB |
Output is correct |
35 |
Correct |
139 ms |
14672 KB |
Output is correct |
36 |
Correct |
165 ms |
14800 KB |
Output is correct |
37 |
Correct |
167 ms |
14672 KB |
Output is correct |
38 |
Correct |
163 ms |
14672 KB |
Output is correct |
39 |
Correct |
112 ms |
14672 KB |
Output is correct |
40 |
Correct |
110 ms |
14672 KB |
Output is correct |
41 |
Correct |
113 ms |
14800 KB |
Output is correct |
42 |
Correct |
125 ms |
14672 KB |
Output is correct |
43 |
Correct |
124 ms |
14672 KB |
Output is correct |
44 |
Correct |
120 ms |
14672 KB |
Output is correct |
45 |
Correct |
124 ms |
14672 KB |
Output is correct |
46 |
Correct |
125 ms |
14672 KB |
Output is correct |
47 |
Correct |
135 ms |
14676 KB |
Output is correct |
48 |
Correct |
138 ms |
14672 KB |
Output is correct |
49 |
Correct |
146 ms |
14836 KB |
Output is correct |
50 |
Correct |
139 ms |
14672 KB |
Output is correct |