답안 #333847

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
333847 2020-12-07T23:44:59 Z jc713 경계 (BOI14_demarcation) C++17
100 / 100
173 ms 18316 KB
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <bits/stdc++.h>

using namespace std;
using namespace __gnu_pbds;
template <class T> using Tree = tree<T, null_type, less<T>,
    rb_tree_tag, tree_order_statistics_node_update>;
 
using ll = long long;
using ull = unsigned long long;
using ld = long double;
using db = double; 
using str = string; // yay python!

using pi = pair<int,int>;
using pl = pair<ll,ll>;
using pd = pair<db,db>;

using vi = vector<int>;
using vb = vector<bool>;
using vl = vector<ll>;
using vd = vector<db>; 
using vs = vector<str>;
using vpi = vector<pi>;
using vpl = vector<pl>; 
using vpd = vector<pd>;

#define tcT template<class T
// ^ lol this makes everything look weird but I'll try it
tcT> using V = vector<T>; 
tcT, size_t SZ> using AR = array<T,SZ>; 

// pairs
#define mp make_pair
#define f first
#define s second

// vectors
#define sz(x) (int)(x).size()
#define all(x) begin(x), end(x)
#define rall(x) (x).rbegin(), (x).rend() 
#define sor(x) sort(all(x)) 
#define rsz resize
#define ins insert 
#define ft front() 
#define bk back()
#define pf push_front 
#define pb push_back
#define eb emplace_back 
#define lb lower_bound 
#define ub upper_bound 

// loops
#define FOR(i,a,b) for (int i = (a); i < (b); ++i)
#define F0R(i,a) FOR(i,0,a)
#define ROF(i,a,b) for (int i = (b)-1; i >= (a); --i)
#define R0F(i,a) ROF(i,0,a)
#define trav(a,x) for (auto& a: x)

const int MOD = 1e9+7; // 998244353
const int MX = 2e5+5;
const ll INF = 1e18; // not too close to LLONG_MAX
const int IINF = 1e9;
const ld PI = acos((ld)-1);
const int xd[4] = {1,0,-1,0}, yd[4] = {0,1,0,-1}; // for every grid problem!!
mt19937 rng((uint32_t)chrono::steady_clock::now().time_since_epoch().count()); 

// helper funcs
constexpr int pct(int x) { return __builtin_popcount(x); } // # of bits set
constexpr int bits(int x) { return 31-__builtin_clz(x); } // floor(log2(x)) 
ll cdiv(ll a, ll b) { return a/b+((a^b)>0&&a%b); } // divide a by b rounded up
ll fdiv(ll a, ll b) { return a/b-((a^b)<0&&a%b); } // divide a by b rounded down

tcT> bool ckmin(T& a, const T& b) {
    return b < a ? a = b, 1 : 0; } // set a = min(a,b)
tcT> bool ckmax(T& a, const T& b) {
    return a < b ? a = b, 1 : 0; }

#define tcTU tcT, class U
tcTU> T fstTrue(T lo, T hi, U f) {
    hi ++; assert(lo <= hi); // assuming f is increasing
    while (lo < hi) { // find first index such that f is true 
        T mid = lo+(hi-lo)/2;
        f(mid) ? hi = mid : lo = mid+1; 
    } 
    return lo;
}
tcTU> T lstTrue(T lo, T hi, U f) {
    lo --; assert(lo <= hi); // assuming f is decreasing
    while (lo < hi) { // find first index such that f is true 
        T mid = lo+(hi-lo+1)/2;
        f(mid) ? lo = mid : hi = mid-1;
    } 
    return lo;
}
tcT> void remDup(vector<T>& v) { // sort and remove duplicates
    sort(all(v)); v.erase(unique(all(v)),end(v)); }
tcTU> void erase(T& t, const U& u) { // don't erase
    auto it = t.find(u); assert(it != end(t));
    t.erase(u); } // element that doesn't exist from (multi)set

// INPUT
#define tcTUU tcT, class ...U
tcT> void re(complex<T>& c);
tcTU> void re(pair<T,U>& p);
tcT> void re(vector<T>& v);
tcT, size_t SZ> void re(AR<T,SZ>& a);

tcT> void re(T& x) { cin >> x; }
void re(db& d) { str t; re(t); d = stod(t); }
void re(ld& d) { str t; re(t); d = stold(t); }
tcTUU> void re(T& t, U&... u) { re(t); re(u...); }

tcT> void re(complex<T>& c) { T a,b; re(a,b); c = {a,b}; }
tcTU> void re(pair<T,U>& p) { re(p.f,p.s); }
tcT> void re(vector<T>& x) { trav(a,x) re(a); }
tcT, size_t SZ> void re(AR<T,SZ>& x) { trav(a,x) re(a); }

// TO_STRING
#define ts to_string
str ts(char c) { return str(1,c); }
str ts(const char* s) { return (str)s; }
str ts(str s) { return s; }
str ts(bool b) { 
    #ifdef LOCAL
        return b ? "true" : "false"; 
    #else 
        return ts((int)b);
    #endif
}
tcT> str ts(complex<T> c) { 
    stringstream ss; ss << c; return ss.str(); }
str ts(vector<bool> v) {
    str res = "{"; F0R(i,sz(v)) res += char('0'+v[i]);
    res += "}"; return res; }
template<size_t SZ> str ts(bitset<SZ> b) {
    str res = ""; F0R(i,SZ) res += char('0'+b[i]);
    return res; }
tcTU> str ts(pair<T,U> p);
tcT> str ts(T v) { // containers with begin(), end()
    #ifdef LOCAL
        bool fst = 1; str res = "{";
        for (const auto& x: v) {
            if (!fst) res += ", ";
            fst = 0; res += ts(x);
        }
        res += "}"; return res;
    #else
        bool fst = 1; str res = "";
        for (const auto& x: v) {
            if (!fst) res += " ";
            fst = 0; res += ts(x);
        }
        return res;

    #endif
}
tcTU> str ts(pair<T,U> p) {
    #ifdef LOCAL
        return "("+ts(p.f)+", "+ts(p.s)+")"; 
    #else
        return ts(p.f)+" "+ts(p.s);
    #endif
}

// OUTPUT
tcT> void pr(T x) { cout << ts(x); }
tcTUU> void pr(const T& t, const U&... u) { 
    pr(t); pr(u...); }
void ps() { pr("\n"); } // print w/ spaces
tcTUU> void ps(const T& t, const U&... u) { 
    pr(t); if (sizeof...(u)) pr(" "); ps(u...); }

// DEBUG
void DBG() { cerr << "]" << endl; }
tcTUU> void DBG(const T& t, const U&... u) {
    cerr << ts(t); if (sizeof...(u)) cerr << ", ";
    DBG(u...); }
#ifdef LOCAL // compile with -DLOCAL, chk -> fake assert
    #define dbg(...) cerr << "Line(" << __LINE__ << ") -> [" << #__VA_ARGS__ << "]: [", DBG(__VA_ARGS__)
    #define chk(...) if (!(__VA_ARGS__)) cerr << "Line(" << __LINE__ << ") -> function(" \
         << __FUNCTION__  << ") -> CHK FAILED: (" << #__VA_ARGS__ << ")" << "\n", exit(0);
#else
    #define dbg(...) 0
    #define chk(...) 0
#endif

// FILE I/O
void setIn(str s) { freopen(s.c_str(),"r",stdin); }
void setOut(str s) { freopen(s.c_str(),"w",stdout); }
void unsyncIO() { cin.tie(0)->sync_with_stdio(0); }
void setIO(str s = "") {
    unsyncIO();
    // cin.exceptions(cin.failbit); 
    // throws exception when do smth illegal
    // ex. try to read letter into int
    if (sz(s)) { setIn(s+".in"), setOut(s+".out"); } // for USACO
}

struct custom_hash {
    static uint64_t splitmix64(uint64_t x) {
        // http://xorshift.di.unimi.it/splitmix64.c
        x += 0x9e3779b97f4a7c15;
        x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
        x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
        return x ^ (x >> 31);
    }

    size_t operator()(uint64_t x) const {
        static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();
        return splitmix64(x + FIXED_RANDOM);
    }
};

int N;
ll PERM = 0;

void shift(vpl& p){
	pl poi = mp(INF, INF);
	trav(a, p)
		ckmin(poi, a);
	trav(a, p)
		a = mp(a.f - poi.f, a.s - poi.s);
}

void rotate(vpl& p){
	vpl ret;
	trav(a, p)
		ret.pb(mp(a.s, -a.f));
	p = ret;
}

void reflect(vpl& p){
	vpl ret;
	trav(a, p)
		ret.pb(mp(a.f, -a.s));
	p = ret;
}

bool equiv(vpl& A, vpl& B){
	set<pl> con;
	trav(a, A)
		con.insert(a);
	trav(a, B)
		if(con.count(a) == 0)
			return false;
	return (sz(A) == sz(B));
}

bool check(vpl& A, vpl& B){
	shift(A);
	shift(B);
	F0R(i, 4){
		rotate(A);
		shift(A);
		if(equiv(A, B))
			return true;
	}
	reflect(A);
	F0R(i, 4){
		rotate(A);
		shift(A);
		if(equiv(A, B))
			return true;
	}
	return false;
}

set<pair<pl, pl>> s;
map<pair<pl, pl>, pi> ind;
bool flip;

bool solve(vpl p){
	ll dist = 0;
	int i = 0;
	s.clear();
	ind.clear();
	F0R(a, sz(p)){
		while(i < sz(p)){
			if(dist + abs(p[(i + 1) % N].s - p[i].s + p[(i + 1) % N].f - p[i].f) >= PERM / 2)
				break;
			dist += abs(p[(i + 1) % N].s - p[i].s + p[(i + 1) % N].f - p[i].f);
			i++;
		}
		if(i == sz(p))
			break;
		while(i < sz(p)){
			pair<pl, pl> x = mp(p[a], p[(a + 1) % N]);
			pair<pl, pl> y = mp(p[i], p[(i + 1) % N]);
			if(x.f.s == x.s.s && y.f.s == y.s.s){
				if((x.f.f > x.s.f) != (y.f.f > y.s.f)){
						if(y.f.f > y.s.f){
							ll init = y.f.f - (PERM / 2 - dist);
							if((init - x.f.f) % 2 == 0 && (init + x.f.f) / 2 >= x.f.f &&
									(init + x.f.f) / 2 <= y.f.f &&
									(init + x.f.f) / 2 <= x.s.f && (init + x.f.f) / 2 >= y.s.f)
								s.insert(mp(mp((init + x.f.f) / 2, min(x.f.s, y.f.s)), mp((init + x.f.f) / 2, max(x.f.s, y.f.s))));
						}
						else{
							ll init = y.f.f + (PERM / 2 - dist);
							if((x.f.f - init) % 2 == 0 && (init + x.f.f) / 2 <= x.f.f && 
									(init + x.f.f) / 2 >= y.f.f &&
									(init + x.f.f) / 2 >= x.s.f && (init + x.f.f) / 2 <= y.s.f)
								s.insert(mp(mp((init + x.f.f) / 2, min(x.f.s, y.f.s)), mp((init + x.f.f) / 2, max(x.f.s, y.f.s))));
						}
				}
			}
			if(dist + abs(p[(i + 1) % N].s - p[i].s + p[(i + 1) % N].f - p[i].f)
					>= PERM / 2 + abs(p[(a + 1) % N].s - p[a].s + p[(a + 1) % N].f - p[a].f))
				break;
			dist += abs(p[(i + 1) % N].s - p[i].s + p[(i + 1) % N].f - p[i].f);
			i++;
		}
		if(i < sz(p)){
			pair<pl, pl> x = mp(p[a], p[(a + 1) % N]);
			pair<pl, pl> y = mp(p[(i + 1) % N], p[(i + 2) % N]);
			if(x.f.s == x.s.s && y.f.s == y.s.s){
				if((x.f.f > x.s.f) != (y.f.f > y.s.f)){
					if(y.f.f > y.s.f){
						ll init = y.f.f - (PERM / 2 - dist - abs(p[(i + 1) % N].s - p[i].s + p[(i + 1) % N].f - p[i].f));
						if((init - x.f.f) % 2 == 0 && (init + x.f.f) / 2 >= x.f.f &&
								(init + x.f.f) / 2 <= y.f.f &&
								(init + x.f.f) / 2 <= x.s.f && (init + x.f.f) / 2 >= y.s.f)
							s.insert(mp(mp((init + x.f.f) / 2, min(x.f.s, y.f.s)), mp((init + x.f.f) / 2, max(x.f.s, y.f.s))));
					}
					else{
						ll init = y.f.f + (PERM / 2 - dist - abs(p[(i + 1) % N].s - p[i].s + p[(i + 1) % N].f - p[i].f));
						if((x.f.f - init) % 2 == 0 && (init + x.f.f) / 2 <= x.f.f &&
								(init + x.f.f) / 2 >= y.f.f &&
								(init + x.f.f) / 2 >= x.s.f && (init + x.f.f) / 2 <= y.s.f)
							s.insert(mp(mp((init + x.f.f) / 2, min(x.f.s, y.f.s)), mp((init + x.f.f) / 2, max(x.f.s, y.f.s))));
					}
				}
			}
		}
		dist -= abs(p[(a + 1) % N].s - p[a].s + p[(a + 1) % N].f - p[a].f);
	}//true = start
	priority_queue<pair<pair<ll, bool>, ll>, vector<pair<pair<ll, bool>, ll>>, greater<pair<pair<ll, bool>, ll>>> Q;
	F0R(a, sz(p)){
		pair<pl, pl> temp = mp(p[a], p[(a + 1) % N]);
		if(temp.f.s == temp.s.s){
			if(temp.f > temp.s)
				swap(temp.f, temp.s);
			Q.push(mp(mp(temp.f.f, false), temp.s.s));
			Q.push(mp(mp(temp.s.f, true), temp.s.s));
		}
	}
	Tree<int> c2;
	trav(e, s){
		bool good = false;	
		while(sz(Q) && Q.top().f.f < e.f.f){
			auto temp = Q.top(); Q.pop();
			if(temp.f.s == false)
				c2.insert(temp.s);
			else
				c2.erase(temp.s);
		}
		while(sz(Q) && Q.top().f.f == e.f.f && Q.top().f.s == false){
			auto t2 = Q.top(); Q.pop();
			c2.insert(t2.s);
		}
		int V1 = c2.order_of_key(e.f.s), V2 = c2.order_of_key(e.s.s);
		if(V1 == V2 - 1)
			good = true;
		if(good){
			vpl A1, A;
			vpl B1, B;
			int fst = -1;
			int sec = -1;
			F0R(a, sz(p)){
				if(p[a].s == p[(a + 1) % N].s && p[a].s == e.f.s){
					if(min(p[a].f, p[(a + 1) % N].f) <= e.f.f && max(p[a].f, p[(a + 1) % N].f) >= e.f.f){
						fst = a;
						break;
					}
				}
			}
			F0R(a, sz(p)){
				if(p[a].s == p[(a + 1) % N].s && p[a].s == e.s.s){
					if(min(p[a].f, p[(a + 1) % N].f) <= e.s.f && max(p[a].f, p[(a + 1) % N].f) >= e.s.f){
						sec = a;
						break;
					}
				}
			}
			A1.pb(e.f);
			for(int a = (fst + 1) % N;;a = (a + 1) % N){
				A1.pb(p[a]);
				if(a == sec)
					break;
			}
			A1.pb(e.s);
			B1.pb(e.s);
			for(int a = (sec + 1) % N;;a = (a + 1) % N){
				B1.pb(p[a]);
				if(a == fst)
					break;
			}
			B1.pb(e.f);
			A1.erase(unique(all(A1)), A1.end());
			B1.erase(unique(all(B1)), B1.end());
			F0R(a, sz(A1)){
				if((A1[a].f == A1[(a + 1) % sz(A1)].f && A1[a].s != A1[(a + 1) % sz(A1)].s && 
						A1[(a + 1) % sz(A1)].f != A1[(a + 2) % sz(A1)].f && A1[(a + 1) % sz(A1)].s == A1[(a + 2) % sz(A1)].s)
						|| (A1[a].f != A1[(a + 1) % sz(A1)].f && A1[a].s == A1[(a + 1) % sz(A1)].s && 
						A1[(a + 1) % sz(A1)].f == A1[(a + 2) % sz(A1)].f && A1[(a + 1) % sz(A1)].s != A1[(a + 2) % sz(A1)].s)){
					A.pb(A1[(a + 1) % sz(A1)]);
				}
			}
			F0R(a, sz(B1)){
				if((B1[a].f == B1[(a + 1) % sz(B1)].f && B1[a].s != B1[(a + 1) % sz(B1)].s &&
						B1[(a + 1) % sz(B1)].f != B1[(a + 2) % sz(B1)].f && B1[(a + 1) % sz(B1)].s == B1[(a + 2) % sz(B1)].s)
						|| (B1[a].f != B1[(a + 1) % sz(B1)].f && B1[a].s == B1[(a + 1) % sz(B1)].s &&
						B1[(a + 1) % sz(B1)].f == B1[(a + 2) % sz(B1)].f && B1[(a + 1) % sz(B1)].s != B1[(a + 2) % sz(B1)].s)){
					B.pb(B1[(a + 1) % sz(B1)]);
				}
			}
			bool found = check(A, B);
			if(found){
				if(!flip)
					cout << e.f.f << " " << e.f.s << " " << e.s.f << " " << e.s.s << endl;
				else
					cout << e.f.s << " " << e.f.f << " " << e.s.s << " " << e.s.f << endl;
				return true;
			}
			return false;
		}
	}
	return false;
}

int main(){
    setIO();
	cin >> N;
	vpl poly(N);
	F0R(a, N)
		cin >> poly[a].f >> poly[a].s;
	F0R(a, N)
		PERM += abs(poly[(a + 1) % N].f - poly[a].f)
		+ abs(poly[(a + 1) % N].s - poly[a].s);
	if(PERM % 2 == 1){
		cout << "NO" << endl;
		return 0;
	}
	if(solve(poly))
		return 0;
	F0R(a, N)
		swap(poly[a].f, poly[a].s);
	flip = true;
	if(!solve(poly))
		cout << "NO" << endl;
	// you should actually read the stuff at the bottom
}

/* stuff you should look for
    * int overflow, array bounds
    * special cases (n=1?)
    * do smth instead of nothing and stay organized
    * WRITE STUFF DOWN
    * DON'T GET STUCK ON ONE APPROACH
*/

Compilation message

demarcation.cpp: In function 'void setIn(str)':
demarcation.cpp:190:28: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
  190 | void setIn(str s) { freopen(s.c_str(),"r",stdin); }
      |                     ~~~~~~~^~~~~~~~~~~~~~~~~~~~~
demarcation.cpp: In function 'void setOut(str)':
demarcation.cpp:191:29: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
  191 | void setOut(str s) { freopen(s.c_str(),"w",stdout); }
      |                      ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 8 ms 1896 KB Output is correct
2 Correct 1 ms 364 KB Output is correct
3 Correct 1 ms 364 KB Output is correct
4 Correct 8 ms 1772 KB Output is correct
5 Correct 1 ms 364 KB Output is correct
6 Correct 1 ms 364 KB Output is correct
7 Correct 1 ms 364 KB Output is correct
8 Correct 1 ms 364 KB Output is correct
9 Correct 78 ms 13784 KB Output is correct
10 Correct 1 ms 364 KB Output is correct
11 Correct 1 ms 364 KB Output is correct
12 Correct 1 ms 364 KB Output is correct
13 Correct 1 ms 364 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 364 KB Output is correct
2 Correct 1 ms 364 KB Output is correct
3 Correct 1 ms 364 KB Output is correct
4 Correct 1 ms 384 KB Output is correct
5 Correct 1 ms 380 KB Output is correct
6 Correct 1 ms 364 KB Output is correct
7 Correct 1 ms 364 KB Output is correct
8 Correct 1 ms 384 KB Output is correct
9 Correct 1 ms 364 KB Output is correct
10 Correct 1 ms 364 KB Output is correct
11 Correct 1 ms 364 KB Output is correct
12 Correct 1 ms 364 KB Output is correct
13 Correct 1 ms 364 KB Output is correct
14 Correct 1 ms 364 KB Output is correct
15 Correct 1 ms 364 KB Output is correct
16 Correct 1 ms 364 KB Output is correct
17 Correct 1 ms 364 KB Output is correct
18 Correct 1 ms 364 KB Output is correct
19 Correct 1 ms 364 KB Output is correct
20 Correct 1 ms 364 KB Output is correct
21 Correct 1 ms 364 KB Output is correct
22 Correct 1 ms 384 KB Output is correct
23 Correct 1 ms 364 KB Output is correct
24 Correct 1 ms 364 KB Output is correct
25 Correct 1 ms 364 KB Output is correct
26 Correct 1 ms 364 KB Output is correct
27 Correct 1 ms 384 KB Output is correct
28 Correct 1 ms 364 KB Output is correct
29 Correct 1 ms 364 KB Output is correct
30 Correct 1 ms 364 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 364 KB Output is correct
2 Correct 1 ms 364 KB Output is correct
3 Correct 1 ms 364 KB Output is correct
4 Correct 1 ms 364 KB Output is correct
5 Correct 1 ms 364 KB Output is correct
6 Correct 1 ms 384 KB Output is correct
7 Correct 1 ms 364 KB Output is correct
8 Correct 1 ms 364 KB Output is correct
9 Correct 1 ms 492 KB Output is correct
10 Correct 1 ms 364 KB Output is correct
11 Correct 1 ms 364 KB Output is correct
12 Correct 1 ms 364 KB Output is correct
13 Correct 1 ms 364 KB Output is correct
14 Correct 1 ms 364 KB Output is correct
15 Correct 1 ms 364 KB Output is correct
16 Correct 1 ms 364 KB Output is correct
17 Correct 1 ms 400 KB Output is correct
18 Correct 1 ms 364 KB Output is correct
19 Correct 1 ms 364 KB Output is correct
20 Correct 1 ms 364 KB Output is correct
21 Correct 1 ms 364 KB Output is correct
22 Correct 1 ms 364 KB Output is correct
23 Correct 1 ms 364 KB Output is correct
24 Correct 1 ms 364 KB Output is correct
25 Correct 1 ms 364 KB Output is correct
26 Correct 1 ms 372 KB Output is correct
27 Correct 1 ms 384 KB Output is correct
28 Correct 1 ms 364 KB Output is correct
29 Correct 1 ms 364 KB Output is correct
30 Correct 1 ms 364 KB Output is correct
31 Correct 1 ms 364 KB Output is correct
32 Correct 2 ms 620 KB Output is correct
33 Correct 2 ms 620 KB Output is correct
34 Correct 1 ms 620 KB Output is correct
35 Correct 1 ms 492 KB Output is correct
36 Correct 2 ms 620 KB Output is correct
37 Correct 2 ms 620 KB Output is correct
38 Correct 2 ms 620 KB Output is correct
39 Correct 2 ms 492 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 8 ms 2024 KB Output is correct
2 Correct 1 ms 364 KB Output is correct
3 Correct 1 ms 364 KB Output is correct
4 Correct 8 ms 1792 KB Output is correct
5 Correct 1 ms 364 KB Output is correct
6 Correct 1 ms 364 KB Output is correct
7 Correct 1 ms 364 KB Output is correct
8 Correct 1 ms 364 KB Output is correct
9 Correct 70 ms 13660 KB Output is correct
10 Correct 1 ms 364 KB Output is correct
11 Correct 1 ms 364 KB Output is correct
12 Correct 1 ms 384 KB Output is correct
13 Correct 1 ms 364 KB Output is correct
14 Correct 1 ms 364 KB Output is correct
15 Correct 1 ms 364 KB Output is correct
16 Correct 1 ms 364 KB Output is correct
17 Correct 1 ms 364 KB Output is correct
18 Correct 1 ms 364 KB Output is correct
19 Correct 1 ms 364 KB Output is correct
20 Correct 1 ms 364 KB Output is correct
21 Correct 1 ms 364 KB Output is correct
22 Correct 1 ms 364 KB Output is correct
23 Correct 1 ms 364 KB Output is correct
24 Correct 1 ms 364 KB Output is correct
25 Correct 1 ms 364 KB Output is correct
26 Correct 1 ms 364 KB Output is correct
27 Correct 1 ms 364 KB Output is correct
28 Correct 1 ms 364 KB Output is correct
29 Correct 1 ms 364 KB Output is correct
30 Correct 1 ms 364 KB Output is correct
31 Correct 1 ms 364 KB Output is correct
32 Correct 1 ms 364 KB Output is correct
33 Correct 1 ms 364 KB Output is correct
34 Correct 1 ms 364 KB Output is correct
35 Correct 2 ms 620 KB Output is correct
36 Correct 2 ms 620 KB Output is correct
37 Correct 2 ms 620 KB Output is correct
38 Correct 1 ms 492 KB Output is correct
39 Correct 2 ms 620 KB Output is correct
40 Correct 2 ms 620 KB Output is correct
41 Correct 2 ms 620 KB Output is correct
42 Correct 2 ms 492 KB Output is correct
43 Correct 2 ms 748 KB Output is correct
44 Correct 41 ms 7232 KB Output is correct
45 Correct 40 ms 7772 KB Output is correct
46 Correct 46 ms 5204 KB Output is correct
47 Correct 11 ms 2384 KB Output is correct
48 Correct 21 ms 4196 KB Output is correct
49 Correct 77 ms 13964 KB Output is correct
50 Correct 61 ms 11992 KB Output is correct
51 Correct 81 ms 13788 KB Output is correct
52 Correct 110 ms 18316 KB Output is correct
53 Correct 52 ms 9976 KB Output is correct
54 Correct 142 ms 13144 KB Output is correct
55 Correct 44 ms 5944 KB Output is correct
56 Correct 113 ms 13404 KB Output is correct
57 Correct 52 ms 10780 KB Output is correct
58 Correct 95 ms 11612 KB Output is correct
59 Correct 173 ms 13968 KB Output is correct
60 Correct 56 ms 6112 KB Output is correct
61 Correct 17 ms 2408 KB Output is correct
62 Correct 24 ms 3940 KB Output is correct
63 Correct 35 ms 5216 KB Output is correct
64 Correct 41 ms 5344 KB Output is correct
65 Correct 22 ms 4356 KB Output is correct
66 Correct 106 ms 11612 KB Output is correct