답안 #333477

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
333477 2020-12-06T08:09:38 Z Thistle 구경하기 (JOI13_watching) C++14
100 / 100
787 ms 33488 KB
#pragma GCC target ("avx2")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#define _USE_MATH_DEFINES
#include<iostream>
#include<string>
#include<queue>
#include<cmath>
#include<map>
#include<set>
#include<list>
#include<iomanip>
#include<vector>
#include<random>
#include<functional>
#include<algorithm>
#include<stack>
#include<cstdio>
#include<cstring>
#include<bitset>
#include<unordered_map>
#include<climits>
#include<fstream>
#include<complex>
#include<time.h>
#include<cassert>
#include<functional>
#include<numeric>
#include<tuple>
using namespace std;
using ll = long long;
using ld = long double;
using H = pair<ll, ll>;
using P = pair<ll, H>;
using vi = vector<ll>;
#define all(a) (a).begin(),(a).end()
#define fs first
#define sc second
#define xx first
#define yy second.first
#define zz second.second
#define Q(i,j,k) mkp(i,mkp(j,k))
#define rng(i,s,n) for(ll i = (s) ; i < (n) ; i++)
#define rep(i,n) rng(i, 0, (n))
#define mkp make_pair
#define vec vector
#define pb emplace_back
#define siz(a) (int)(a).size()
#define crdcomp(b) sort(all((b)));(b).erase(unique(all((b))),(b).end())
#define getidx(b,num) (lower_bound(all(b),(num))-(b).begin())
#define ssp(i,n) (i==(ll)(n)-1?"\n":" ")
#define ctoi(c) (int)(c-'0')
#define itoc(c) (char)(c+'0')
#define cyes printf("Yes\n")
#define cno printf("No\n")
#define cdf(n) for(int quetimes_=(n);quetimes_>0;quetimes_--)
#define gcj printf("Case #%lld: ",qq123_+1)
#define readv(a,n) a.resize(n,0);rep(i,(n)) a[i]=read()
#define found(a,x) (a.root(x)!=a.end())
constexpr ll mod = (ll)1e9 + 7;
constexpr ll Mod = 998244353;
constexpr ld EPS = 1e-10;
constexpr ll inf = (ll)3 * 1e18;
constexpr int Inf = (ll)15 * 1e8;
constexpr int dx[] = { -1,1,0,0 }, dy[] = { 0,0,-1,1 };
template<class T>bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }
template<class T>bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }
ll read() { ll u, k = scanf("%lld", &u); return u; }
string reads() { string s; cin >> s; return s; }
H readh(short g = 0) { H u; int k = scanf("%lld %lld", &u.fs, &u.sc); if (g == 1) u.fs--, u.sc--; if (g == 2) u.fs--; return u; }
bool ina(H t, int h, int w) { return 0 <= t.fs && t.fs < h && 0 <= t.sc && t.sc < w; }
bool ina(int t, int l, int r) { return l <= t && t < r; }
ll gcd(ll i, ll j) { return j ? gcd(j, i % j) : i; }
ll ppc(ll x) {
    int sum = 0; for (int i = 0; i < 60; i++)if ((1ll << i) & x) sum++;
    return sum;
}
void fin1() { printf("-1\n"); exit(0); }
void fin0() { printf("0\n"); exit(0); }

template<typename T>
class csum {
    vec<T> v;
public:
    csum(vec<T>& a) :v(a) { build(); }
    csum() {}
    csum(int sz) { init(sz); }
    void init(int sz) { v = vector<T>(sz, 0); }
    void init(vec<T>& a) { v = a; build(); }
    void build() {
        for (int i = 1; i < v.size(); i++) v[i] += v[i - 1];
    }
    void add(int l, int r, T x) {
        v[l] += x;
        v[r] -= x;
    }//[l,r)
    //[l,r]
    T a(int l, int r) {
        if (r < l) return 0;
        return v[r] - (l == 0 ? 0 : v[l - 1]);
    }
    //[l,r)
    T b(int l, int r) {
        return a(l, r - 1);
    }
    T a(pair<int, int>t) {
        return a(t.first, t.second);
    }
    T b(pair<int, int>t) {
        return b(t.first, t.second);
    }
    T operator[](int x)const {
        return v[x];
    }
};
template<ll mod>
class modint {
public:ll v;
      modint(ll v = 0) { s(v % mod + mod); }
      constexpr static int fn_ = (ll)2e6 + 5;
      static vector<modint>fact, comp;
      modint pow(ll x) const {
          modint b(v), c(1);
          while (x) {
              if (x & 1) c *= b;
              b *= b;
              x >>= 1;
          }
          return c;
      }
      inline modint& s(int vv) {
          v = vv < mod ? vv : vv - mod;
          return *this;
      }
      inline modint inv()const { return pow(mod - 2); }
      inline modint operator-()const { return modint() - *this; }
      inline modint& operator+=(const modint b) { return s(v + b.v); }
      inline modint& operator-=(const modint b) { return s(v + mod - b.v); }
      inline modint& operator*=(const modint b) { v = v * b.v % mod; return *this; }
      inline modint& operator/=(const modint b) { v = v * b.inv().v % mod; return *this; }
      inline modint operator+(const modint& b) const { return modint(v) += b; }
      inline modint operator-(const modint& b) const { return modint(v) -= b; }
      inline modint operator*(const modint& b) const { return modint(v) *= b; }
      inline modint operator/(const modint& b) const { return modint(v) /= b; }
      friend ostream& operator<<(ostream& os, const modint& m) {
          return os << m.v;
      }
      friend istream& operator>>(istream& is, modint& m) {
          int x; is >> x; m = modint(x);
          return is;
      }
      bool operator<(const modint& r)const { return v < r.v; }
      bool operator>(const modint& r)const { return v > r.v; }
      bool operator<=(const modint& r)const { return v <= r.v; }
      bool operator>=(const modint& r)const { return v >= r.v; }
      bool operator==(const modint& r)const { return v == r.v; }
      bool operator!=(const modint& r)const { return v != r.v; }
      explicit operator bool()const { return v; }
      explicit operator int()const { return v; }
      modint comb(modint k) {
          if (k > *this) return modint();
          if (fact.empty()) combinit();
          if (v >= fn_) {
              if (k > *this - k) k = *this - k;
              modint tmp(1);
              for (int i = v; i >= v - k.v + 1; i--) tmp *= modint(i);
              return tmp * comp[k.v];
          }
          return fact[v] * comp[k.v] * comp[v - k.v];
      }//nCk
      modint perm(modint k) {
          if (k > *this) return modint();
          if (fact.empty()) combinit();
          if (v >= fn_) {
              modint tmp(1);
              for (int i = v; i >= v - k.v + 1; i--) tmp *= modint(i);
              return tmp;
          }
          return fact[v] * comp[v - k.v];
      }//nPk
      static void combinit() {
          fact.assign(fn_, modint());
          fact[0] = 1;
          for (int i = 1; i < fn_; i++) fact[i] = fact[i - 1] * modint(i);
          comp.assign(fn_, modint());
          comp[fn_ - 1] = fact[fn_ - 1].inv();
          for (int i = fn_ - 2; i >= 0; i--) comp[i] = comp[i + 1] * modint(i + 1);
      }
};
using mint = modint<ll(1e9 + 7)>; template<>vec<mint> mint::fact = vec<mint>(); template<>vec<mint> mint::comp = vec<mint>();
//--------------------------------------------------------------
class unionfind {
    int size = 0, grps = 0;
    vector<int>pa;
public:
    unionfind() {}
    unionfind(int n) {
        init(n);
    }
    void init(int n) {
        size = n, grps = n;
        pa.assign(n + 1, -1);
    }
    int root(int x) {
        if (pa[x] < 0) return x;
        return pa[x] = root(pa[x]);
    }
    bool unite(int x, int y) {
        x = root(x); y = root(y);
        if (x == y) return false;
        grps--;
        if (pa[x] > pa[y]) swap(x, y);
        pa[x] += pa[y];
        pa[y] = x;
        return true;
    }
    bool same(int x, int y) {
        return root(x) == root(y);
    }
    bool isroot(int x) {
        return x == root(x);
    }
    int sz(int x) {
        return -pa[root(x)];
    }
    int groups() {
        return grps;
    }
    H operator[](int x) {
        x = root(x);
        return H{ x,-pa[x] };
    }
};
//--------------------------------------------------------------
int n,p,q;
vi a;
int dp[2000][2];
signed main() {
    cin>>n>>p>>q;
    readv(a,n);
    sort(all(a));
    vi v;
    if(p+q>=n){
        cout<<1<<endl;
        return 0;
    }
    v.pb(0);
    v.pb(1);
    rep(i,n)rng(j,i+1,n) {
        v.pb(a[j]-a[i]+1);
        v.pb((a[j]-a[i]+2)/2);
    }
    crdcomp(v);
    ll ok=siz(v)-1,ng=0,w;
    while(ok-ng>1){
        w=v[(ok+ng)/2];
        vi b,c;
        rep(i,n){
            b.pb(getidx(a,a[i]-w+1)-1);
            c.pb(getidx(a,a[i]-2*w+1)-1);
        }
        rep(j,p+1){
            rep(i,n){
                ll k=0;
                if(j==0) k=Inf;
                else if(b[i]>=0){
                    k=dp[b[i]][(j+1)&1];
                }
                ll r=1;
                if(c[i]>=0) r=dp[c[i]][j&1]+1;
                dp[i][j&1]=min(k,r);
            }
        }//地点iまで埋めていて、今までに使った小型カメラの個数がj個の時の最小の大型カメラの個数
        if(dp[n-1][p&1]<=q) ok=(ok+ng)/2;
        else ng=(ok+ng)/2;
    }
    cout<<v[ok]<<endl;
}

Compilation message

watching.cpp: In function 'll read()':
watching.cpp:69:19: warning: unused variable 'k' [-Wunused-variable]
   69 | ll read() { ll u, k = scanf("%lld", &u); return u; }
      |                   ^
watching.cpp: In function 'H readh(short int)':
watching.cpp:71:33: warning: unused variable 'k' [-Wunused-variable]
   71 | H readh(short g = 0) { H u; int k = scanf("%lld %lld", &u.fs, &u.sc); if (g == 1) u.fs--, u.sc--; if (g == 2) u.fs--; return u; }
      |                                 ^
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 492 KB Output is correct
2 Correct 0 ms 364 KB Output is correct
3 Correct 1 ms 384 KB Output is correct
4 Correct 1 ms 372 KB Output is correct
5 Correct 1 ms 364 KB Output is correct
6 Correct 1 ms 364 KB Output is correct
7 Correct 2 ms 492 KB Output is correct
8 Correct 2 ms 492 KB Output is correct
9 Correct 2 ms 492 KB Output is correct
10 Correct 2 ms 492 KB Output is correct
11 Correct 2 ms 492 KB Output is correct
12 Correct 2 ms 492 KB Output is correct
13 Correct 1 ms 492 KB Output is correct
14 Correct 1 ms 492 KB Output is correct
15 Correct 2 ms 492 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 525 ms 33368 KB Output is correct
2 Correct 1 ms 364 KB Output is correct
3 Correct 1 ms 364 KB Output is correct
4 Correct 1 ms 364 KB Output is correct
5 Correct 1 ms 364 KB Output is correct
6 Correct 1 ms 364 KB Output is correct
7 Correct 505 ms 33332 KB Output is correct
8 Correct 503 ms 33360 KB Output is correct
9 Correct 572 ms 33360 KB Output is correct
10 Correct 787 ms 33332 KB Output is correct
11 Correct 522 ms 33360 KB Output is correct
12 Correct 656 ms 33360 KB Output is correct
13 Correct 406 ms 33360 KB Output is correct
14 Correct 404 ms 33360 KB Output is correct
15 Correct 462 ms 33488 KB Output is correct