#pragma GCC target ("avx")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#define _USE_MATH_DEFINES
#include<iostream>
#include<string>
#include<queue>
#include<cmath>
#include<map>
#include<set>
#include<list>
#include<iomanip>
#include<vector>
#include<random>
#include<functional>
#include<algorithm>
#include<stack>
#include<cstdio>
#include<cstring>
#include<bitset>
#include<unordered_map>
#include<climits>
#include<fstream>
#include<complex>
#include<time.h>
#include<cassert>
#include<functional>
#include<numeric>
#include<tuple>
using namespace std;
using ll = long long;
using ld = long double;
using H = pair<ll, ll>;
using P = pair<ll, H>;
using vi = vector<ll>;
#define all(a) (a).begin(),(a).end()
#define fs first
#define sc second
#define xx first
#define yy second.first
#define zz second.second
#define Q(i,j,k) mkp(i,mkp(j,k))
#define rng(i,s,n) for(ll i = (s) ; i < (n) ; i++)
#define rep(i,n) rng(i, 0, (n))
#define mkp make_pair
#define vec vector
#define pb emplace_back
#define siz(a) (int)(a).size()
#define crdcomp(b) sort(all((b)));(b).erase(unique(all((b))),(b).end())
#define getidx(b,num) (lower_bound(all(b),(num))-(b).begin())
#define ssp(i,n) (i==(ll)(n)-1?"\n":" ")
#define ctoi(c) (int)(c-'0')
#define itoc(c) (char)(c+'0')
#define cyes printf("Yes\n")
#define cno printf("No\n")
#define cdf(n) for(int quetimes_=(n);quetimes_>0;quetimes_--)
#define gcj printf("Case #%lld: ",qq123_+1)
#define readv(a,n) a.resize(n,0);rep(i,(n)) a[i]=read()
#define found(a,x) (a.root(x)!=a.end())
constexpr ll mod = (ll)1e9 + 7;
constexpr ll Mod = 998244353;
constexpr ld EPS = 1e-10;
constexpr ll inf = (ll)3 * 1e18;
constexpr int Inf = (ll)15 * 1e8;
constexpr int dx[] = { -1,1,0,0 }, dy[] = { 0,0,-1,1 };
template<class T>bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }
template<class T>bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }
ll read() { ll u, k = scanf("%lld", &u); return u; }
string reads() { string s; cin >> s; return s; }
H readh(short g = 0) { H u; int k = scanf("%lld %lld", &u.fs, &u.sc); if (g == 1) u.fs--, u.sc--; if (g == 2) u.fs--; return u; }
bool ina(H t, int h, int w) { return 0 <= t.fs && t.fs < h && 0 <= t.sc && t.sc < w; }
bool ina(int t, int l, int r) { return l <= t && t < r; }
ll gcd(ll i, ll j) { return j ? gcd(j, i % j) : i; }
ll ppc(ll x) {
int sum = 0; for (int i = 0; i < 60; i++)if ((1ll << i) & x) sum++;
return sum;
}
void fin1() { printf("-1\n"); exit(0); }
void fin0() { printf("0\n"); exit(0); }
template<typename T>
class csum {
vec<T> v;
public:
csum(vec<T>& a) :v(a) { build(); }
csum() {}
csum(int sz) { init(sz); }
void init(int sz) { v = vector<T>(sz, 0); }
void init(vec<T>& a) { v = a; build(); }
void build() {
for (int i = 1; i < v.size(); i++) v[i] += v[i - 1];
}
void add(int l, int r, T x) {
v[l] += x;
v[r] -= x;
}//[l,r)
//[l,r]
T a(int l, int r) {
if (r < l) return 0;
return v[r] - (l == 0 ? 0 : v[l - 1]);
}
//[l,r)
T b(int l, int r) {
return a(l, r - 1);
}
T a(pair<int, int>t) {
return a(t.first, t.second);
}
T b(pair<int, int>t) {
return b(t.first, t.second);
}
T operator[](int x)const {
return v[x];
}
};
template<ll mod>
class modint {
public:ll v;
modint(ll v = 0) { s(v % mod + mod); }
constexpr static int fn_ = (ll)2e6 + 5;
static vector<modint>fact, comp;
modint pow(ll x) const {
modint b(v), c(1);
while (x) {
if (x & 1) c *= b;
b *= b;
x >>= 1;
}
return c;
}
inline modint& s(int vv) {
v = vv < mod ? vv : vv - mod;
return *this;
}
inline modint inv()const { return pow(mod - 2); }
inline modint operator-()const { return modint() - *this; }
inline modint& operator+=(const modint b) { return s(v + b.v); }
inline modint& operator-=(const modint b) { return s(v + mod - b.v); }
inline modint& operator*=(const modint b) { v = v * b.v % mod; return *this; }
inline modint& operator/=(const modint b) { v = v * b.inv().v % mod; return *this; }
inline modint operator+(const modint& b) const { return modint(v) += b; }
inline modint operator-(const modint& b) const { return modint(v) -= b; }
inline modint operator*(const modint& b) const { return modint(v) *= b; }
inline modint operator/(const modint& b) const { return modint(v) /= b; }
friend ostream& operator<<(ostream& os, const modint& m) {
return os << m.v;
}
friend istream& operator>>(istream& is, modint& m) {
int x; is >> x; m = modint(x);
return is;
}
bool operator<(const modint& r)const { return v < r.v; }
bool operator>(const modint& r)const { return v > r.v; }
bool operator<=(const modint& r)const { return v <= r.v; }
bool operator>=(const modint& r)const { return v >= r.v; }
bool operator==(const modint& r)const { return v == r.v; }
bool operator!=(const modint& r)const { return v != r.v; }
explicit operator bool()const { return v; }
explicit operator int()const { return v; }
modint comb(modint k) {
if (k > *this) return modint();
if (fact.empty()) combinit();
if (v >= fn_) {
if (k > *this - k) k = *this - k;
modint tmp(1);
for (int i = v; i >= v - k.v + 1; i--) tmp *= modint(i);
return tmp * comp[k.v];
}
return fact[v] * comp[k.v] * comp[v - k.v];
}//nCk
modint perm(modint k) {
if (k > *this) return modint();
if (fact.empty()) combinit();
if (v >= fn_) {
modint tmp(1);
for (int i = v; i >= v - k.v + 1; i--) tmp *= modint(i);
return tmp;
}
return fact[v] * comp[v - k.v];
}//nPk
static void combinit() {
fact.assign(fn_, modint());
fact[0] = 1;
for (int i = 1; i < fn_; i++) fact[i] = fact[i - 1] * modint(i);
comp.assign(fn_, modint());
comp[fn_ - 1] = fact[fn_ - 1].inv();
for (int i = fn_ - 2; i >= 0; i--) comp[i] = comp[i + 1] * modint(i + 1);
}
};
using mint = modint<ll(1e9 + 7)>; template<>vec<mint> mint::fact = vec<mint>(); template<>vec<mint> mint::comp = vec<mint>();
//--------------------------------------------------------------
class unionfind {
int size = 0, grps = 0;
vector<int>pa;
public:
unionfind() {}
unionfind(int n) {
init(n);
}
void init(int n) {
size = n, grps = n;
pa.assign(n + 1, -1);
}
int root(int x) {
if (pa[x] < 0) return x;
return pa[x] = root(pa[x]);
}
bool unite(int x, int y) {
x = root(x); y = root(y);
if (x == y) return false;
grps--;
if (pa[x] > pa[y]) swap(x, y);
pa[x] += pa[y];
pa[y] = x;
return true;
}
bool same(int x, int y) {
return root(x) == root(y);
}
bool isroot(int x) {
return x == root(x);
}
int sz(int x) {
return -pa[root(x)];
}
int groups() {
return grps;
}
H operator[](int x) {
x = root(x);
return H{ x,-pa[x] };
}
};
//--------------------------------------------------------------
int n,p,q;
vi a;
signed main() {
cin>>n>>p>>q;
readv(a,n);
sort(all(a));
vi v;
v.pb(0);
rep(i,n)rng(j,i+1,n) {
v.pb(a[j]-a[i]+1);
v.pb((a[j]-a[i]+1)/2+1);
v.pb((a[j]-a[i]+1)/2);
}
crdcomp(v);
ll ok=siz(v)-1,ng=0,w;
while(ok-ng>1){
w=v[(ok+ng)/2];
vi b,c;
rep(i,n){
b.pb(getidx(a,a[i]-w+1)-1);
c.pb(getidx(a,a[i]-2*w+1)-1);
}
vec<vi>dp(n,vi(p+1,inf));
rep(i,n)rep(j,p+1){
ll k=0;
if(j==0) k=inf;
else if(b[i]>=0) k=dp[b[i]][j-1];
ll r=1;
if(c[i]>=0) r=dp[c[i]][j]+1;
dp[i][j]=min(k,r);
}//地点iまで埋めていて、今までに使った小型カメラの個数がj個の時の最小の大型カメラの個数
if(dp[n-1][p]<=q) ok=(ok+ng)/2;
else ng=(ok+ng)/2;
}
cout<<v[ok]<<endl;
}
Compilation message
watching.cpp: In function 'll read()':
watching.cpp:69:19: warning: unused variable 'k' [-Wunused-variable]
69 | ll read() { ll u, k = scanf("%lld", &u); return u; }
| ^
watching.cpp: In function 'H readh(short int)':
watching.cpp:71:33: warning: unused variable 'k' [-Wunused-variable]
71 | H readh(short g = 0) { H u; int k = scanf("%lld %lld", &u.fs, &u.sc); if (g == 1) u.fs--, u.sc--; if (g == 2) u.fs--; return u; }
| ^
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
2 ms |
620 KB |
Output is correct |
2 |
Incorrect |
1 ms |
364 KB |
Output isn't correct |
3 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
827 ms |
66096 KB |
Output is correct |
2 |
Incorrect |
0 ms |
364 KB |
Output isn't correct |
3 |
Halted |
0 ms |
0 KB |
- |