Submission #328201

# Submission time Handle Problem Language Result Execution time Memory
328201 2020-11-15T17:24:04 Z CaroLinda Land of the Rainbow Gold (APIO17_rainbow) C++14
100 / 100
2825 ms 590592 KB
#include "rainbow.h"
#include <bits/stdc++.h>

#define mk make_pair
#define pii pair<int,int>
#define pb push_back
#define ff first
#define ss second
#define all(x) x.begin(),x.end()
#define sz(x) (int)(x.size() )
#define ll long long

const int MAX = 2e5+10 ;

using namespace std ;

/*
I need two types of persistent segment trees:

* +1 in the opening and -1 in the closure
* +1 in everything
 
*/

struct persistentSeg
{

	//don't forget to create the dummy node

	vector<int> lef, rig , _sum ;
	int roots[MAX] ;
	
	int create()
	{
		lef.push_back(0) ;
		rig.push_back(0) ;
		_sum.push_back(0) ;

		return sz(lef) - 1 ;
	}

	int createAndCopy(int pos )
	{
		lef.push_back( lef[pos] ) ;
		rig.push_back( rig[pos] ) ;
		_sum.push_back( _sum[pos] ) ;

		return sz(lef) - 1 ;
	}

	int m(int l, int r ) { return (l+r)>>1 ; }

	int upd(int pos, int l, int r, int idx, int val )
	{
		int newPos = createAndCopy(pos) ;

		_sum[newPos] += val ;

		if( l== r ) return newPos ;

		if( idx <= m(l,r) ) 
		{
			int novo = upd(lef[newPos] , l , m(l,r) , idx, val ) ; 
			lef[newPos] = novo ;
		}
		else 
		{
			int novo = upd(rig[newPos] , m(l,r) + 1 , r , idx , val ) ; 
			rig[newPos] = novo ;			
		}

		return newPos ;

	}

	void qryTogether(int pos1, int pos2, int l, int r, int beg, int en, int &z, int &x  )
	{
		if( l > en || r < beg ) return ;
		if( l >= beg && r <= en ) 
		{
			z += _sum[pos1] ;
			x += _sum[pos2] ;
			return ;
		}

	   qryTogether( lef[pos1], lef[pos2] , l , m(l,r) , beg, en , z, x ) ;
	   qryTogether( rig[pos1], rig[pos2], m(l,r)+1, r, beg, en, z, x ) ;

	}

	void subtraction(int pos1, int pos2, int l, int r ,int beg, int en, int &y )
	{
		if( l > en || r < beg ) return ;
		if( l >= beg && r <= en ) 
		{
			y += _sum[pos1] - _sum[pos2] ;
			return ;
		}

		subtraction(lef[pos1], lef[pos2], l, m(l,r), beg, en, y ) ;
		subtraction(rig[pos1], rig[pos2], m(l,r)+1, r, beg, en, y ) ;

	}

} ;

struct Event
{

	//Type
	// 0 = opening
	// 1 = closure

	int r , c , type ;

	Event(int r = 0 , int c = 0 , int type = 0 ) : r(r)  ,c(c) , type(type) {} 
	
	bool operator < ( Event other ) const 
	{
		if( c != other.c ) return c < other.c ;
		return type < other.type ;
	}

	void print() { printf("%d %d %d\n", r, c , type ) ; }

} ;

int R, C ;
int maxR, minR, maxC, minC ;
persistentSeg vertices[2] , edges[2] ;

void init(int _R, int _C, int sr, int sc, int M, char *S) 
{
	
	R = _R ;
	C = _C ;

	vector< pii > serpentPath(1, make_pair(sr, sc) ) ;

	maxR = minR = sr ;
	maxC = minC = sc ;

	for(int i = 0 ; i < M ; i++ ) 
	{
		if( S[i] == 'N' ) sr-- ;
		if( S[i] == 'E' ) sc++ ;
		if(S[i] == 'S' ) sr++ ;
		if(S[i] == 'W' ) sc-- ;

		serpentPath.push_back(make_pair(sr, sc) ) ;

		maxR = max(maxR, sr ) ;
		minR = min(minR, sr) ;
		maxC = max(maxC, sc ) ;
		minC = min(minC, sc) ;

	}
	
	vector<int> freq[R+1] ;
	for(auto p : serpentPath ) freq[ p.first ].push_back( p.second ) ;

	vector<Event> sweep ;

	for(int i = 1 ; i <= R ; i++ )
	{
		if( sz(freq[i] ) == 0 )
		{
			sweep.push_back( Event(i , 1 , 0 ) ) ;
			sweep.push_back( Event(i, C , 1 ) ) ;	
			continue ;
		}
		
		sort(all(freq[i] ) ) ;
		freq[i].push_back(C+1) ;

		int formerColumn = 0 ;

		for(auto e : freq[i] )
		{
			if( formerColumn+1 <= e-1 )
			{
				sweep.push_back(Event(i, formerColumn+1, 0 ) ) ;
				sweep.push_back( Event(i, e-1, 1 ) ) ;
			}
				
			formerColumn =  e ;
		}

	}


	sort(all(sweep ) ) ;

	set<int> currentRows ;

	vertices[0].create() ; vertices[0].roots[0] = 0 ;
	vertices[1].create() ; vertices[1].roots[0] = 0 ;
	edges[0].create() ; edges[0].roots[0] = 0 ;
	edges[1].create() ; edges[1].roots[0] = 0 ;

	for(int i = 1 , ptr=0 ; i <= C ; i++ )
	{
		vertices[0].roots[i] = vertices[0].roots[i-1] ;
		vertices[1].roots[i] = vertices[1].roots[i-1] ;
		edges[0].roots[i] = edges[0].roots[i-1] ;
		edges[1].roots[i] = edges[1].roots[i-1] ;

		while( ptr < sz(sweep ) && sweep[ptr].c == i )
		{

			vertices[1].roots[i] = vertices[1].upd( vertices[1].roots[i] , 1 , R , sweep[ptr].r , 1 ) ;

			if(sweep[ptr].type == 0 )
			{
				vertices[0].roots[i] = vertices[0].upd( vertices[0].roots[i] , 1 , R , sweep[ptr].r , 1 ) ; 
				currentRows.insert( sweep[ptr].r ) ;

				auto it = currentRows.find( sweep[ptr].r ) ;

				if( it != currentRows.begin() ) 
				{
					it-- ;

					if( *it == sweep[ptr].r-1)
					{
						edges[0].roots[i] = edges[0].upd( edges[0].roots[i] , 1 , R  , *it , 1 ) ;
						edges[1].roots[i] = edges[1].upd( edges[1].roots[i] , 1 , R  , *it , 1 ) ;
					}
					it++ ;
				}
				it++ ;
				if(it != currentRows.end() && *it == sweep[ptr].r+1 )
				{
					edges[0].roots[i] = edges[0].upd( edges[0].roots[i] , 1 , R  , sweep[ptr].r , 1 ) ;
					edges[1].roots[i] = edges[1].upd( edges[1].roots[i] , 1 , R  , sweep[ptr].r , 1 ) ;					
				}

			}
			else
			{
				vertices[0].roots[i] = vertices[0].upd( vertices[0].roots[i] , 1 , R , sweep[ptr].r , -1 ) ;

				auto it = currentRows.find( sweep[ptr].r ) ;

				if( it != currentRows.begin() ) 
				{
					it-- ;
					if(*it == sweep[ptr].r-1 )
					{
						edges[0].roots[i] = edges[0].upd( edges[0].roots[i] , 1 , R  , *it , -1 ) ;
						edges[1].roots[i] = edges[1].upd( edges[1].roots[i] , 1 , R  , *it , 1 ) ;
					}
					it++ ;
				}
				it++ ;
				if(it != currentRows.end() && *it == sweep[ptr].r+1 )
				{
					edges[0].roots[i] = edges[0].upd( edges[0].roots[i] , 1 , R  , sweep[ptr].r , -1 ) ;
					edges[1].roots[i] = edges[1].upd( edges[1].roots[i] , 1 , R  , sweep[ptr].r , 1 ) ;					
				}
				it-- ;

				currentRows.erase(it) ;

			}                  

			ptr++ ;
		} 

	}

}

int colour(int ar, int ac, int br, int bc) 
{
	 
	int toSum = 0 ;

	if( ar < minR && br > maxR && ac < minC && bc > maxC )
	{
		ar = minR-1 ;
		br = maxR+1 ;
		ac = minC-1 ;
		bc = maxC+1 ;
		toSum = 1 ;	
	}

	//Count of vertices
	int z = 0 , x = 0 , y = 0 ;
	vertices[0].qryTogether(vertices[0].roots[bc], vertices[0].roots[ac-1], 1, R, ar, br , z, x ) ;
	vertices[1].subtraction( vertices[1].roots[bc] , vertices[1].roots[ac-1], 1 , R , ar , br , y ) ;

	y = (y - x - z )/2 ;

	int qtdVert = x + y + z ;

	//Count of edges
	br-- ;
	z = x =  y = 0 ;
	edges[0].qryTogether(edges[0].roots[bc], edges[0].roots[ac-1] , 1 , R , ar , br , z, x ) ;
	edges[1].subtraction( edges[1].roots[bc], edges[1].roots[ac-1] , 1 , R , ar , br, y ) ;
	y = (y-x-z)/2 ;

	int qtdEdges = x + y + z ;

	return qtdVert - qtdEdges + toSum ;

}

# Verdict Execution time Memory Grader output
1 Correct 2 ms 620 KB Output is correct
2 Correct 3 ms 876 KB Output is correct
3 Correct 2 ms 492 KB Output is correct
4 Correct 2 ms 620 KB Output is correct
5 Correct 3 ms 876 KB Output is correct
6 Correct 1 ms 364 KB Output is correct
7 Correct 1 ms 384 KB Output is correct
8 Correct 1 ms 364 KB Output is correct
9 Correct 1 ms 364 KB Output is correct
10 Correct 0 ms 364 KB Output is correct
11 Correct 2 ms 492 KB Output is correct
12 Correct 2 ms 584 KB Output is correct
13 Correct 4 ms 1132 KB Output is correct
14 Correct 3 ms 876 KB Output is correct
15 Correct 0 ms 364 KB Output is correct
16 Correct 1 ms 364 KB Output is correct
17 Correct 1 ms 364 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 364 KB Output is correct
2 Correct 1 ms 364 KB Output is correct
3 Correct 77 ms 4452 KB Output is correct
4 Correct 78 ms 5088 KB Output is correct
5 Correct 94 ms 6496 KB Output is correct
6 Correct 88 ms 6644 KB Output is correct
7 Correct 98 ms 9184 KB Output is correct
8 Correct 82 ms 5088 KB Output is correct
9 Correct 80 ms 5216 KB Output is correct
10 Correct 91 ms 6368 KB Output is correct
11 Correct 94 ms 6752 KB Output is correct
12 Correct 63 ms 4996 KB Output is correct
13 Correct 65 ms 5088 KB Output is correct
14 Correct 67 ms 6516 KB Output is correct
15 Correct 69 ms 6880 KB Output is correct
16 Correct 86 ms 4916 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 364 KB Output is correct
2 Correct 1174 ms 387280 KB Output is correct
3 Correct 1956 ms 590592 KB Output is correct
4 Correct 1632 ms 485032 KB Output is correct
5 Correct 1655 ms 485124 KB Output is correct
6 Correct 1169 ms 391640 KB Output is correct
7 Correct 1176 ms 392944 KB Output is correct
8 Correct 15 ms 7264 KB Output is correct
9 Correct 30 ms 13792 KB Output is correct
10 Correct 561 ms 195864 KB Output is correct
11 Correct 774 ms 236444 KB Output is correct
12 Correct 1149 ms 387364 KB Output is correct
13 Correct 1931 ms 590412 KB Output is correct
14 Correct 1605 ms 484912 KB Output is correct
15 Correct 1656 ms 485228 KB Output is correct
16 Correct 1178 ms 390912 KB Output is correct
17 Correct 1175 ms 393200 KB Output is correct
18 Correct 1572 ms 483752 KB Output is correct
19 Correct 1142 ms 396292 KB Output is correct
20 Correct 1158 ms 396168 KB Output is correct
21 Correct 15 ms 7264 KB Output is correct
22 Correct 31 ms 13792 KB Output is correct
23 Correct 565 ms 195736 KB Output is correct
24 Correct 784 ms 236616 KB Output is correct
25 Correct 1158 ms 387228 KB Output is correct
26 Correct 1916 ms 590532 KB Output is correct
27 Correct 1612 ms 485128 KB Output is correct
28 Correct 1659 ms 484980 KB Output is correct
29 Correct 1160 ms 390892 KB Output is correct
30 Correct 1181 ms 393064 KB Output is correct
31 Correct 1574 ms 483708 KB Output is correct
32 Correct 1176 ms 396420 KB Output is correct
33 Correct 1152 ms 396168 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 620 KB Output is correct
2 Correct 3 ms 876 KB Output is correct
3 Correct 2 ms 492 KB Output is correct
4 Correct 2 ms 620 KB Output is correct
5 Correct 3 ms 876 KB Output is correct
6 Correct 1 ms 364 KB Output is correct
7 Correct 1 ms 384 KB Output is correct
8 Correct 1 ms 364 KB Output is correct
9 Correct 1 ms 364 KB Output is correct
10 Correct 0 ms 364 KB Output is correct
11 Correct 2 ms 492 KB Output is correct
12 Correct 2 ms 584 KB Output is correct
13 Correct 4 ms 1132 KB Output is correct
14 Correct 3 ms 876 KB Output is correct
15 Correct 0 ms 364 KB Output is correct
16 Correct 1 ms 364 KB Output is correct
17 Correct 1 ms 364 KB Output is correct
18 Correct 628 ms 52240 KB Output is correct
19 Correct 119 ms 1516 KB Output is correct
20 Correct 117 ms 1516 KB Output is correct
21 Correct 139 ms 1900 KB Output is correct
22 Correct 143 ms 2540 KB Output is correct
23 Correct 117 ms 1516 KB Output is correct
24 Correct 118 ms 1516 KB Output is correct
25 Correct 141 ms 2028 KB Output is correct
26 Correct 143 ms 2668 KB Output is correct
27 Correct 302 ms 27612 KB Output is correct
28 Correct 226 ms 8672 KB Output is correct
29 Correct 258 ms 12396 KB Output is correct
30 Correct 460 ms 60656 KB Output is correct
31 Correct 3 ms 364 KB Output is correct
32 Correct 242 ms 13268 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 620 KB Output is correct
2 Correct 3 ms 876 KB Output is correct
3 Correct 2 ms 492 KB Output is correct
4 Correct 2 ms 620 KB Output is correct
5 Correct 3 ms 876 KB Output is correct
6 Correct 1 ms 364 KB Output is correct
7 Correct 1 ms 384 KB Output is correct
8 Correct 1 ms 364 KB Output is correct
9 Correct 1 ms 364 KB Output is correct
10 Correct 0 ms 364 KB Output is correct
11 Correct 2 ms 492 KB Output is correct
12 Correct 2 ms 584 KB Output is correct
13 Correct 4 ms 1132 KB Output is correct
14 Correct 3 ms 876 KB Output is correct
15 Correct 0 ms 364 KB Output is correct
16 Correct 1 ms 364 KB Output is correct
17 Correct 1 ms 364 KB Output is correct
18 Correct 628 ms 52240 KB Output is correct
19 Correct 119 ms 1516 KB Output is correct
20 Correct 117 ms 1516 KB Output is correct
21 Correct 139 ms 1900 KB Output is correct
22 Correct 143 ms 2540 KB Output is correct
23 Correct 117 ms 1516 KB Output is correct
24 Correct 118 ms 1516 KB Output is correct
25 Correct 141 ms 2028 KB Output is correct
26 Correct 143 ms 2668 KB Output is correct
27 Correct 302 ms 27612 KB Output is correct
28 Correct 226 ms 8672 KB Output is correct
29 Correct 258 ms 12396 KB Output is correct
30 Correct 460 ms 60656 KB Output is correct
31 Correct 3 ms 364 KB Output is correct
32 Correct 242 ms 13268 KB Output is correct
33 Correct 1174 ms 387280 KB Output is correct
34 Correct 1956 ms 590592 KB Output is correct
35 Correct 1632 ms 485032 KB Output is correct
36 Correct 1655 ms 485124 KB Output is correct
37 Correct 1169 ms 391640 KB Output is correct
38 Correct 1176 ms 392944 KB Output is correct
39 Correct 15 ms 7264 KB Output is correct
40 Correct 30 ms 13792 KB Output is correct
41 Correct 561 ms 195864 KB Output is correct
42 Correct 774 ms 236444 KB Output is correct
43 Correct 1149 ms 387364 KB Output is correct
44 Correct 1931 ms 590412 KB Output is correct
45 Correct 1605 ms 484912 KB Output is correct
46 Correct 1656 ms 485228 KB Output is correct
47 Correct 1178 ms 390912 KB Output is correct
48 Correct 1175 ms 393200 KB Output is correct
49 Correct 1572 ms 483752 KB Output is correct
50 Correct 1142 ms 396292 KB Output is correct
51 Correct 1158 ms 396168 KB Output is correct
52 Correct 15 ms 7264 KB Output is correct
53 Correct 31 ms 13792 KB Output is correct
54 Correct 565 ms 195736 KB Output is correct
55 Correct 784 ms 236616 KB Output is correct
56 Correct 1158 ms 387228 KB Output is correct
57 Correct 1916 ms 590532 KB Output is correct
58 Correct 1612 ms 485128 KB Output is correct
59 Correct 1659 ms 484980 KB Output is correct
60 Correct 1160 ms 390892 KB Output is correct
61 Correct 1181 ms 393064 KB Output is correct
62 Correct 1574 ms 483708 KB Output is correct
63 Correct 1176 ms 396420 KB Output is correct
64 Correct 1152 ms 396168 KB Output is correct
65 Correct 109 ms 7264 KB Output is correct
66 Correct 180 ms 13792 KB Output is correct
67 Correct 806 ms 195780 KB Output is correct
68 Correct 1106 ms 236560 KB Output is correct
69 Correct 1997 ms 387340 KB Output is correct
70 Correct 2825 ms 590520 KB Output is correct
71 Correct 2507 ms 485080 KB Output is correct
72 Correct 2551 ms 485156 KB Output is correct
73 Correct 1910 ms 391236 KB Output is correct
74 Correct 2017 ms 393320 KB Output is correct
75 Correct 2444 ms 483952 KB Output is correct
76 Correct 1973 ms 396420 KB Output is correct
77 Correct 1726 ms 396680 KB Output is correct
78 Correct 77 ms 4452 KB Output is correct
79 Correct 78 ms 5088 KB Output is correct
80 Correct 94 ms 6496 KB Output is correct
81 Correct 88 ms 6644 KB Output is correct
82 Correct 98 ms 9184 KB Output is correct
83 Correct 82 ms 5088 KB Output is correct
84 Correct 80 ms 5216 KB Output is correct
85 Correct 91 ms 6368 KB Output is correct
86 Correct 94 ms 6752 KB Output is correct
87 Correct 63 ms 4996 KB Output is correct
88 Correct 65 ms 5088 KB Output is correct
89 Correct 67 ms 6516 KB Output is correct
90 Correct 69 ms 6880 KB Output is correct
91 Correct 86 ms 4916 KB Output is correct