# | Submission time | Handle | Problem | Language | Result | Execution time | Memory |
---|---|---|---|---|---|---|---|
322389 | 2020-11-14T14:48:32 Z | Farrius | Crocodile's Underground City (IOI11_crocodile) | C++11 | 0 ms | 0 KB |
#include "crocodile.h" #include <bits/stdc++.h> #define len(x) (int) x.size() #define f first #define s second using namespace std; using ll = long long; using ld = long double; const int INF = 1e9; int travel_plan (int n, int m, int r[][2], int l[], int k, int p[]) { //make graph vector<pair<int, int>> g[n]; for (int i = 0; i < m; i++) { int u = r[i][0], v = r[i][1]; g[u].push_back(make_pair(v, l[i])); g[v].push_back(make_pair(u, l[i])); } //know how many exits have each vertex set<pair<int, int>> can_exit[n]; for (int i = 0; i < k; i++) { int exit = p[i]; for (auto u : g[exit]) { can_exit[u.first].insert(make_pair(u.second, exit)); } } //dijkstra int sol = 1e9; vector<int> dist(n, INF); priority_queue<pair<int, int>> pq; bool vis[n]; memset(vis, false, sizeof(vis)); pq.push(make_pair(0, 0)); dist[0] = 0; while (!pq.empty()) { int v = pq.top().s; int cur = pq.top().f; pq.pop(); if (vis[v]) continue; vis[v] = true; if (len(can_exit[v]) >= 2) { auto last = can_exit[v].rbegin(); last--; int cost = *last sol = min(sol, cost.f + cur); continue; } for (auto u : g[v]) { if (dist[u.f] > dist[v] + u.s) { dist[u.f] = dist[v] + u.s; pq.push(make_pair(-dist[u.f], u.f)); } } } return sol; }