//Never stop trying
/*#pragma GCC target ("avx2")
#pragma GCC optimize ("Ofast")
#pragma GCC optimization ("O3")
#pragma GCC optimization ("unroll-loops")*/
#include "bits/stdc++.h"
using namespace std;
#define boost ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0)
typedef long long ll;
#define int ll
typedef string str;
typedef double db;
typedef long double ld;
typedef pair<int, int> pi;
#define fi first
#define se second
typedef vector<int> vi;
typedef vector<pi> vpi;
typedef vector<str> vs;
typedef vector<ld> vd;
#define pb push_back
#define eb emplace_back
#define sz(x) (int)x.size()
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define endl "\n"
#define FOR(i,a,b) for (int i = (a); i < (b); ++i)
#define ROF(i,a,b) for (int i = (b)-1; i >= (a); --i)
const int MOD = 1e9 + 7; //998244353
const ll INF = 1e18;
const int MX = 200 + 10;
const int nx[4] = {0, 0, 1, -1}, ny[4] = {1, -1, 0, 0}; //right left down up
template<class T> using V = vector<T>;
template<class T> bool ckmin(T& a, const T& b) { return a > b ? a = b, 1 : 0; }
template<class T> bool ckmax(T& a, const T& b) { return a < b ? a = b, 1 : 0; }
ll cdiv(ll a, ll b) { return a / b + ((a ^ b) > 0 && a % b); } // divide a by b rounded up
//constexpr int log2(int x) { return 31 - __builtin_clz(x); } // floor(log2(x))
mt19937 rng(chrono::system_clock::now().time_since_epoch().count());
//mt19937_64 rng(chrono::system_clock::now().time_since_epoch().count());
ll random(ll a, ll b){
return a + rng() % (b - a + 1);
}
#ifndef LOCAL
#define cerr if(false) cerr
#endif
#define dbg(x) cerr << #x << " : " << x << endl;
#define dbgs(x,y) cerr << #x << " : " << x << " / " << #y << " : " << y << endl;
#define dbgv(v) cerr << #v << " : " << "[ "; for(auto it : v) cerr << it << ' '; cerr << ']' << endl;
#define here() cerr << "here" << endl;
void IO() {
#ifdef LOCAL
freopen("input.txt", "r", stdin);
freopen("output.txt", "w", stdout);
#endif
}
struct edge{
int u,v,w,ww;
};
int N,M;
vpi adj[202],adj2[202];
V<edge> vec;
map<pi,int> mp;
int d[202]; //dist(1,u)
int d2[202]; //dist(u,N)
int d3[202]; //dist(N,u)
int d4[202]; //dist(u,1);
int d5[50001]; //dist(1,N) without edge[i]
int d6[50001]; //dist(N,1) without edge[i]
void precompute(){
fill(d,d+N+1,INF); d[1]=0;
fill(d2,d2+N+1,INF); d2[N]=0;
fill(d3,d3+N+1,INF); d3[N]=0;
fill(d4,d4+N+1,INF); d4[1]=0;
fill(d5,d5+M,INF);
fill(d6,d6+M,INF);
priority_queue<pi,vpi,greater<pi>> q;
//d
q.push({0,1});
while(!q.empty()){
int u=q.top().se,dd=q.top().fi;
q.pop();
if(dd>d[u]) continue;
for(auto v: adj[u])if(d[v.fi]>dd+v.se){
d[v.fi]=dd+v.se;
q.push({d[v.fi],v.fi});
}
}
//d2
q.push({0,N});
while(!q.empty()){
int u=q.top().se,d=q.top().fi;
q.pop();
if(d>d2[u]) continue;
for(auto v: adj2[u])if(d2[v.fi]>d+v.se){
d2[v.fi]=d+v.se;
q.push({d2[v.fi],v.fi});
}
}
//d3
q.push({0,N});
while(!q.empty()){
int u=q.top().se,d=q.top().fi;
q.pop();
if(d>d3[u]) continue;
for(auto v: adj[u])if(d3[v.fi]>d+v.se){
d3[v.fi]=d+v.se;
q.push({d3[v.fi],v.fi});
}
}
//d4
q.push({0,1});
while(!q.empty()){
int u=q.top().se,d=q.top().fi;
q.pop();
if(d>d4[u]) continue;
for(auto v: adj2[u])if(d4[v.fi]>d+v.se){
d4[v.fi]=d+v.se;
q.push({d4[v.fi],v.fi});
}
}
//d5
q.push({0,1});
int dist[N+1],p[N+1];
fill(dist,dist+N+1,INF); dist[1]=0;
fill(p,p+N+1,-1);
while(!q.empty()){
int u=q.top().se,d=q.top().fi;
q.pop();
if(d>dist[u]) continue;
for(auto v: adj[u])if(dist[v.fi]>d+v.se){
dist[v.fi]=d+v.se;
p[v.fi]=u;
q.push({dist[v.fi],v.fi});
}
}
vi vc; //edges included in the shortest path (1 --> N)
int v=N;
while(p[v]!=-1){
int u=p[v];
vc.pb(mp[{u,v}]);
v=u;
}
for(auto i: vc){
int uu=vec[i].u,vv=vec[i].v;
q.push({0,1});
fill(dist,dist+N+1,INF); dist[1]=0;
while(!q.empty()){
int u=q.top().se,d=q.top().fi;
q.pop();
if(d>dist[u]) continue;
for(auto v: adj[u])if(!(u==uu && v.fi==vv) && dist[v.fi]>d+v.se){
dist[v.fi]=d+v.se;
q.push({dist[v.fi],v.fi});
}
}
d5[i]=dist[N];
}
bool inc[M]; fill(inc,inc+M,0); for(auto i: vc) inc[i]=1;
FOR(i,0,M) if(!inc[i]) d5[i]=d[N];
//d6
q.push({0,N});
fill(dist,dist+N+1,INF); dist[N]=0;
fill(p,p+N+1,-1);
while(!q.empty()){
int u=q.top().se,d=q.top().fi;
q.pop();
if(d>dist[u]) continue;
for(auto v: adj[u])if(dist[v.fi]>d+v.se){
dist[v.fi]=d+v.se;
p[v.fi]=u;
q.push({dist[v.fi],v.fi});
}
}
vc.clear(); //edges included in the shortest path (1 --> N)
v=1;
while(p[v]!=-1){
int u=p[v];
vc.pb(mp[{u,v}]);
v=u;
}
for(auto i: vc){
int uu=vec[i].u,vv=vec[i].v;
q.push({0,N});
fill(dist,dist+N+1,INF); dist[N]=0;
while(!q.empty()){
int u=q.top().se,d=q.top().fi;
q.pop();
if(d>dist[u]) continue;
for(auto v: adj[u])if(!(u==uu && v.fi==vv)&&dist[v.fi]>d+v.se){
dist[v.fi]=d+v.se;
q.push({dist[v.fi],v.fi});
}
}
d6[i]=dist[1];
}
fill(inc,inc+M,0); for(auto i: vc) inc[i]=1;
FOR(i,0,M) if(!inc[i]) d6[i]=d3[1];
}
int32_t main() {
boost; IO();
cin>>N>>M;
FOR(i,0,M){
int u,v,w,ww; cin>>u>>v>>w>>ww;
vec.pb({u,v,w,ww});
adj[u].pb({v,w});
adj2[v].pb({u,w});
mp[{u,v}]=i;
}
precompute();
int ans=d[N]+d3[1];
FOR(i,0,M){
edge ed=vec[i];
int u=ed.u,v=ed.v,w=ed.w,ww=ed.ww;
swap(u,v); //invert
int x=ww+d[u]+w+d2[v]+d6[i];
int y=ww+d3[u]+w+d4[v]+d5[i];
ckmin(ans,min(x,y));
}
if(ans>=1e15) ans=-1;
cout << ans << endl;
return 0;
}
/*
minDist(N,1)_without an edges
*/
/* Careful!!!
.Array bounds
.Infinite loops
.Uninitialized variables / empty containers
.Multisets are shit
Some insights:
.Binary search
.Graph representation
.Write brute force code
.Change your approach
*/
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
2 ms |
492 KB |
Output is correct |
2 |
Correct |
1 ms |
364 KB |
Output is correct |
3 |
Correct |
2 ms |
492 KB |
Output is correct |
4 |
Correct |
2 ms |
492 KB |
Output is correct |
5 |
Correct |
1 ms |
492 KB |
Output is correct |
6 |
Correct |
1 ms |
364 KB |
Output is correct |
7 |
Correct |
1 ms |
364 KB |
Output is correct |
8 |
Correct |
0 ms |
364 KB |
Output is correct |
9 |
Correct |
1 ms |
512 KB |
Output is correct |
10 |
Incorrect |
16 ms |
492 KB |
Output isn't correct |
11 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
43 ms |
6484 KB |
Output is correct |
2 |
Correct |
37 ms |
6488 KB |
Output is correct |
3 |
Correct |
38 ms |
6484 KB |
Output is correct |
4 |
Incorrect |
2 ms |
620 KB |
Output isn't correct |
5 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
2 ms |
492 KB |
Output is correct |
2 |
Correct |
1 ms |
364 KB |
Output is correct |
3 |
Correct |
34 ms |
5468 KB |
Output is correct |
4 |
Correct |
1 ms |
364 KB |
Output is correct |
5 |
Correct |
40 ms |
6992 KB |
Output is correct |
6 |
Correct |
0 ms |
364 KB |
Output is correct |
7 |
Correct |
1 ms |
364 KB |
Output is correct |
8 |
Incorrect |
44 ms |
6872 KB |
Output isn't correct |
9 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
2 ms |
492 KB |
Output is correct |
2 |
Correct |
1 ms |
364 KB |
Output is correct |
3 |
Correct |
2 ms |
492 KB |
Output is correct |
4 |
Correct |
2 ms |
492 KB |
Output is correct |
5 |
Correct |
1 ms |
492 KB |
Output is correct |
6 |
Correct |
1 ms |
364 KB |
Output is correct |
7 |
Correct |
1 ms |
364 KB |
Output is correct |
8 |
Correct |
0 ms |
364 KB |
Output is correct |
9 |
Correct |
1 ms |
512 KB |
Output is correct |
10 |
Incorrect |
16 ms |
492 KB |
Output isn't correct |
11 |
Halted |
0 ms |
0 KB |
- |