Submission #319996

# Submission time Handle Problem Language Result Execution time Memory
319996 2020-11-07T05:56:12 Z arwaeystoamneg Rabbit Carrot (LMIO19_triusis) C++17
100 / 100
31 ms 4196 KB
/*
ID: awesome35
LANG: C++14
TASK: vans
*/
#define _CRT_SECURE_NO_WARNINGS
#include<bits/stdc++.h>
#include<unordered_set>
#include<unordered_map>
#include<chrono>

using namespace std;
typedef pair<int, int> pii;
typedef long long ll;
typedef pair<ll, ll> pll;
// warning: ld is rougly 2x slower than double. Proof: ld: https://oj.uz/submission/319677 double: https://oj.uz/submission/319678
typedef long double ld;
typedef vector<int> vi;
typedef vector<ll> vll;
typedef vector<pair<int, int>> vpi;
typedef vector<pair<ll, ll>> vpll;

#define FOR(i,a,b) for (int i = (a); i < (b); ++i)
#define F0R(i,a) FOR(i,0,a)
#define ROF(i,a,b) for (int i = (b)-1; i >= (a); --i)
#define R0F(i,a) ROF(i,0,a)
#define trav(a,x) for (auto& a: x)

#define pb push_back
#define mp make_pair
#define rsz resize
#define sz(x) int(x.size())
#define all(x) x.begin(),x.end()
#define f first
#define s second
//#define endl '\n'
#define test int testc;cin>>testc;while(testc--)
const int dx[4] = { 1,0,-1,0 }, dy[4] = { 0,1,0,-1 }; // for every grid problem!!
const ll linf = 4000000000000000000LL;
const ll inf = 1000000007;//998244353
const ld pi = 3.1415926535;

void pv(vi a) { trav(x, a)cout << x << " "; cout << endl; }void pv(vll a) { trav(x, a)cout << x << " "; cout << endl; }void pv(vector<vi>a) {
	F0R(i, sz(a)) { cout << i << endl; pv(a[i]); cout << endl; }
}void pv(vector<vll>a) { F0R(i, sz(a)) { cout << i << endl; pv(a[i]); }cout << endl; }void pv(vector<string>a) { trav(x, a)cout << x << endl; cout << endl; }
void build_primes(vi& primes, int size)
{
	vi visited;
	visited.rsz(size, 0);
	FOR(i, 2, size)
	{
		if (visited[i] == 0)
		{
			primes.pb(i);
			int a = i;
			while (a < size)
			{
				visited[a] = 1;
				a += i;
			}
		}
	}
}
vector<vector<ll>> matrix_mult(vector<vector<ll>>& a, vector<vector<ll>>& b)
{
	int n = a.size();
	vector<vector<ll>> answer;
	answer.resize(n);
	for (int i = 0; i < n; i++) answer[i].resize(n, 0);
	for (int i = 0; i < n; i++)
	{
		for (int j = 0; j < n; j++) // calculate answer[i][j]
		{
			for (int k = 0; k < n; k++)
				answer[i][j] = (answer[i][j] + a[i][k] * b[k][j]) % inf;
		}
	}
	return answer;
}
int modInverse(int a, int m)
{
	int m0 = m;
	int y = 0, x = 1;
	if (m == 1)
		return 0;
	while (a > 1)
	{
		// q is quotient 
		int q = a / m;
		int t = m;
		// m is remainder now, process same as 
		// Euclid's algo 
		m = a % m, a = t;
		t = y;
		// Update y and x 
		y = x - q * y;
		x = t;
	}
	// Make x positive 
	if (x < 0)
		x += m0;

	return x;
}
ll power(ll x, ll y)
{
	ll k = 1LL << 60;
	ll z = 1;
	while (k != 0)
	{
		z *= z;
		z %= inf;
		if (y >= k)
		{
			z *= x;
			z %= inf;
			y -= k;
		}
		k >>= 1;
	}
	return z;
}
struct point
{
	ld x, y;
	bool operator<(const point& rhs)const
	{
		if (x == rhs.x)return y < rhs.y;
		return x < rhs.x;
	}
};
struct pt
{
	ll x, y;
	bool operator<(const pt& rhs)const
	{
		if (x == rhs.x)return y < rhs.y;
		return x < rhs.x;
	}
};
// remember that you need to take abs
long double area(point x, point y, point z)
{
	return (x.y * y.x + y.y * z.x + z.y * x.x - x.x * y.y - y.x * z.y - z.x * x.y) / 2.0;
}
bool clockwise(point x, point y, point z)
{
	return area(x, y, z) > 0;
}
// remember that you need to take abs
long double area(pt x, pt y, pt z)
{
	return (x.y * y.x + y.y * z.x + z.y * x.x - x.x * y.y - y.x * z.y - z.x * x.y) / 2.0;
}
bool clockwise(pt x, pt y, pt z)
{
	return area(x, y, z) > 0;
}
ll gcd(ll a, ll b)
{
	if (a > b)swap(a, b);
	if (a == 0)return b;
	return gcd(a, b % a);
}
int popcount(ll a)
{
	int count = 0;
	while (a)
	{
		count += (a & 1);
		a >>= 1;
	}
	return count;
}
ll choose(ll n, ll r)
{
	ll p = 1, k = 1;
	if (n - r < r)
		r = n - r;
	if (r != 0) {
		while (r) {
			p *= n;
			k *= r;
			long long m = gcd(p, k);
			p /= m;
			k /= m;
			n--;
			r--;
		}
	}
	else
		p = 1;
	return p;
}
vll prefix_hash(string& a, vll& powers, ll mod)
{
	int n = sz(a);
	vll prefix(n + 1);
	F0R(i, n)prefix[i + 1] = (prefix[i] + powers[i] * (a[i] - '1' + 1)) % mod;
	return prefix;
}
struct custom_hash {
	static uint64_t splitmix64(uint64_t x) {
		// http://xorshift.di.unimi.it/splitmix64.c
		x += 0x9e3779b97f4a7c15;
		x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
		x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
		return x ^ (x >> 31);
	}
	//the return type was size_t. But isnt that problematic?
	uint64_t operator()(uint64_t x) const {
		static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();
		return splitmix64(x + FIXED_RANDOM);
	}
};
struct custom_hash_fast {
	//the return type was size_t. But isnt that problematic?
	uint64_t operator()(uint64_t x) const {
		static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();
		x ^= FIXED_RANDOM;
		return x ^ (x >> 16);
	}
};
void setIO(string s) {
	ios_base::sync_with_stdio(0); cin.tie(0);
	if (sz(s))
	{
		freopen((s + ".in").c_str(), "r", stdin);
		if (s != "test3")
			freopen((s + ".out").c_str(), "w", stdout);
	}
}
int main()
{
	setIO("");
	int n, m;
	cin >> n >> m;
	vi a(n); trav(x, a)cin >> x;
	F0R(i, n)a[i] = m * (i + 1) - a[i];
	vi dp = { -inf };
	trav(x, a)
	{
		if (x < 0)continue;
		auto it = upper_bound(all(dp), x);
		if (it == dp.end())
		{
			dp.pb(x);
		}
		else dp[it - dp.begin()] = x;
	}
	cout << n - sz(dp) + 1 << endl;
}

Compilation message

triusis.cpp: In function 'void setIO(std::string)':
triusis.cpp:228:10: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
  228 |   freopen((s + ".in").c_str(), "r", stdin);
      |   ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
triusis.cpp:230:11: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
  230 |    freopen((s + ".out").c_str(), "w", stdout);
      |    ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 1 ms 364 KB Output is correct
2 Correct 1 ms 384 KB Output is correct
3 Correct 1 ms 364 KB Output is correct
4 Correct 1 ms 364 KB Output is correct
5 Correct 1 ms 492 KB Output is correct
6 Correct 1 ms 364 KB Output is correct
7 Correct 1 ms 492 KB Output is correct
8 Correct 1 ms 364 KB Output is correct
9 Correct 1 ms 364 KB Output is correct
10 Correct 1 ms 492 KB Output is correct
11 Correct 1 ms 364 KB Output is correct
12 Correct 1 ms 364 KB Output is correct
13 Correct 1 ms 364 KB Output is correct
14 Correct 1 ms 364 KB Output is correct
15 Correct 1 ms 364 KB Output is correct
16 Correct 1 ms 364 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 384 KB Output is correct
2 Correct 1 ms 364 KB Output is correct
3 Correct 1 ms 364 KB Output is correct
4 Correct 2 ms 364 KB Output is correct
5 Correct 1 ms 364 KB Output is correct
6 Correct 1 ms 364 KB Output is correct
7 Correct 1 ms 492 KB Output is correct
8 Correct 1 ms 492 KB Output is correct
9 Correct 2 ms 492 KB Output is correct
10 Correct 1 ms 492 KB Output is correct
11 Correct 2 ms 364 KB Output is correct
12 Correct 1 ms 460 KB Output is correct
13 Correct 1 ms 364 KB Output is correct
14 Correct 1 ms 364 KB Output is correct
15 Correct 2 ms 364 KB Output is correct
16 Correct 1 ms 364 KB Output is correct
17 Correct 1 ms 364 KB Output is correct
18 Correct 1 ms 364 KB Output is correct
19 Correct 1 ms 384 KB Output is correct
20 Correct 1 ms 364 KB Output is correct
21 Correct 1 ms 364 KB Output is correct
22 Correct 1 ms 492 KB Output is correct
23 Correct 1 ms 364 KB Output is correct
24 Correct 1 ms 492 KB Output is correct
25 Correct 1 ms 364 KB Output is correct
26 Correct 1 ms 364 KB Output is correct
27 Correct 1 ms 492 KB Output is correct
28 Correct 1 ms 364 KB Output is correct
29 Correct 1 ms 364 KB Output is correct
30 Correct 1 ms 364 KB Output is correct
31 Correct 1 ms 364 KB Output is correct
32 Correct 1 ms 364 KB Output is correct
33 Correct 1 ms 364 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 364 KB Output is correct
2 Correct 1 ms 364 KB Output is correct
3 Correct 1 ms 364 KB Output is correct
4 Correct 1 ms 492 KB Output is correct
5 Correct 1 ms 492 KB Output is correct
6 Correct 1 ms 492 KB Output is correct
7 Correct 1 ms 364 KB Output is correct
8 Correct 1 ms 364 KB Output is correct
9 Correct 1 ms 364 KB Output is correct
10 Correct 2 ms 364 KB Output is correct
11 Correct 1 ms 384 KB Output is correct
12 Correct 1 ms 364 KB Output is correct
13 Correct 1 ms 364 KB Output is correct
14 Correct 2 ms 364 KB Output is correct
15 Correct 1 ms 364 KB Output is correct
16 Correct 1 ms 364 KB Output is correct
17 Correct 1 ms 492 KB Output is correct
18 Correct 1 ms 492 KB Output is correct
19 Correct 2 ms 492 KB Output is correct
20 Correct 1 ms 492 KB Output is correct
21 Correct 2 ms 364 KB Output is correct
22 Correct 1 ms 460 KB Output is correct
23 Correct 1 ms 364 KB Output is correct
24 Correct 1 ms 364 KB Output is correct
25 Correct 2 ms 364 KB Output is correct
26 Correct 1 ms 364 KB Output is correct
27 Correct 1 ms 364 KB Output is correct
28 Correct 1 ms 364 KB Output is correct
29 Correct 1 ms 384 KB Output is correct
30 Correct 1 ms 364 KB Output is correct
31 Correct 1 ms 364 KB Output is correct
32 Correct 1 ms 492 KB Output is correct
33 Correct 1 ms 364 KB Output is correct
34 Correct 1 ms 492 KB Output is correct
35 Correct 1 ms 364 KB Output is correct
36 Correct 1 ms 364 KB Output is correct
37 Correct 1 ms 492 KB Output is correct
38 Correct 1 ms 364 KB Output is correct
39 Correct 1 ms 364 KB Output is correct
40 Correct 1 ms 364 KB Output is correct
41 Correct 1 ms 364 KB Output is correct
42 Correct 1 ms 364 KB Output is correct
43 Correct 1 ms 364 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 364 KB Output is correct
2 Correct 1 ms 364 KB Output is correct
3 Correct 1 ms 364 KB Output is correct
4 Correct 1 ms 492 KB Output is correct
5 Correct 1 ms 492 KB Output is correct
6 Correct 1 ms 492 KB Output is correct
7 Correct 1 ms 364 KB Output is correct
8 Correct 1 ms 364 KB Output is correct
9 Correct 1 ms 364 KB Output is correct
10 Correct 2 ms 364 KB Output is correct
11 Correct 1 ms 384 KB Output is correct
12 Correct 1 ms 364 KB Output is correct
13 Correct 1 ms 364 KB Output is correct
14 Correct 2 ms 364 KB Output is correct
15 Correct 1 ms 364 KB Output is correct
16 Correct 1 ms 364 KB Output is correct
17 Correct 1 ms 492 KB Output is correct
18 Correct 1 ms 492 KB Output is correct
19 Correct 2 ms 492 KB Output is correct
20 Correct 1 ms 492 KB Output is correct
21 Correct 2 ms 364 KB Output is correct
22 Correct 1 ms 460 KB Output is correct
23 Correct 1 ms 364 KB Output is correct
24 Correct 1 ms 364 KB Output is correct
25 Correct 2 ms 364 KB Output is correct
26 Correct 1 ms 364 KB Output is correct
27 Correct 1 ms 364 KB Output is correct
28 Correct 19 ms 2668 KB Output is correct
29 Correct 24 ms 3052 KB Output is correct
30 Correct 31 ms 3052 KB Output is correct
31 Correct 31 ms 3172 KB Output is correct
32 Correct 23 ms 3308 KB Output is correct
33 Correct 23 ms 3428 KB Output is correct
34 Correct 29 ms 3696 KB Output is correct
35 Correct 29 ms 4196 KB Output is correct
36 Correct 25 ms 2664 KB Output is correct
37 Correct 23 ms 2404 KB Output is correct
38 Correct 25 ms 3308 KB Output is correct
39 Correct 25 ms 3308 KB Output is correct
40 Correct 1 ms 364 KB Output is correct
41 Correct 1 ms 384 KB Output is correct
42 Correct 1 ms 364 KB Output is correct
43 Correct 1 ms 364 KB Output is correct
44 Correct 1 ms 492 KB Output is correct
45 Correct 1 ms 364 KB Output is correct
46 Correct 1 ms 492 KB Output is correct
47 Correct 1 ms 364 KB Output is correct
48 Correct 1 ms 364 KB Output is correct
49 Correct 1 ms 492 KB Output is correct
50 Correct 1 ms 364 KB Output is correct
51 Correct 1 ms 364 KB Output is correct
52 Correct 1 ms 364 KB Output is correct
53 Correct 1 ms 364 KB Output is correct
54 Correct 1 ms 364 KB Output is correct
55 Correct 1 ms 364 KB Output is correct