Submission #311566

# Submission time Handle Problem Language Result Execution time Memory
311566 2020-10-10T16:34:52 Z IgorI Comparing Plants (IOI20_plants) C++17
27 / 100
4000 ms 49400 KB
#include <bits/stdc++.h>

using namespace std;


const int N = 500000;
const int INF = 1e9;

int c;
int n;
int H[N];
int k;

pair<int, int> tree[4 * N];
int push[4 * N];

pair<int, int> Merge(pair<int, int> a, pair<int, int> b)
{
    return min(a, b);
}

void Push(int V)
{
    tree[2 * V + 1].first += push[V];
    tree[2 * V + 2].first += push[V];
    push[2 * V + 1] += push[V];
    push[2 * V + 2] += push[V];
    push[V] = 0;
}

void Build(int L, int R, int V, vector<int> &r)
{
    if (L + 1 == R)
    {
        tree[V] = {r[L], L};
        return;
    }
    int M = (L + R) / 2;
    Build(L, M, 2 * V + 1, r);
    Build(M, R, 2 * V + 2, r);
    tree[V] = Merge(tree[2 * V + 1], tree[2 * V + 2]);
}

pair<int, int> Get(int l, int r, int L = 0, int R = n, int V = 0)
{
    if (r <= L || R <= l) return {INF, 0};
    if (l <= L && R <= r) return tree[V];
    int M = (L + R) / 2;
    Push(V);
    return Merge(Get(l, r, L, M, 2 * V + 1), Get(l, r, M, R, 2 * V + 2));
}

void Add(int l, int r, int x, int L = 0, int R = n, int V = 0)
{
    if (r <= L || R <= l) return;
    if (l <= L && R <= r)
    {
        tree[V].first += x;
        push[V] += x;
        return;
    }
    int M = (L + R) / 2;
    Push(V);
    Add(l, r, x, L, M, 2 * V + 1);
    Add(l, r, x, M, R, 2 * V + 2);
    tree[V] = Merge(tree[2 * V + 1], tree[2 * V + 2]);
}

int CGet(int l, int r)
{
    if (l < 0)
    {
        l += n;
        pair<int, int> a = Get(l, n);
        pair<int, int> b = Get(0, r);
        if (a.first == 0) return a.second;
        if (b.first == 0) return b.second;
        return -1;
    }
    pair<int, int> a = Get(l, r);
    if (a.first == 0) return a.second;
    return -1;
}

void CAdd(int l, int r, int x)
{
    if (l < 0)
    {
        l += n;
        Add(l, n, x);
        Add(0, r, x);
    }
    else
    {
        Add(l, r, x);
    }
}

pair<int, int> tree2[4 * N];

void Build2(int L = 0, int R = n, int V = 0)
{
    tree2[V] = {INF, L};
    if (L + 1 == R) return;
    int M = (L + R) / 2;
    Build2(L, M, 2 * V + 1);
    Build2(M, R, 2 * V + 2);
}

void Set2(int pos, int x, int L = 0, int R = n, int V = 0)
{
    if (L + 1 == R)
    {
        tree2[V] = {x, L};
        return;
    }
    int M = (L + R) / 2;
    if (pos < M) Set2(pos, x, L, M, 2 * V + 1);
    else Set2(pos, x, M, R, 2 * V + 2);
    tree2[V] = min(tree2[2 * V + 1], tree2[2 * V + 2]);
}

pair<int, int> Get2(int l, int r, int L = 0, int R = n, int V = 0)
{
    if (r <= L || R <= l) return {INF, 0};
    if (l <= L && R <= r) return tree2[V];
    int M = (L + R) / 2;
    return min(Get2(l, r, L, M, 2 * V + 1), Get2(l, r, M, R, 2 * V + 2));
}

int up_left[N], up_right[N];

int CGet2(int l, int r)
{
    if (l < 0 || r > n)
    {
        if (l < 0) l += n;
        if (r > n) r -= n;
        pair<int, int> a = Get2(l, n);
        pair<int, int> b = Get2(0, r);
        if (a.first < INF) return a.second;
        if (b.first < INF) return b.second;
        return -1;
    }
    pair<int, int> a = Get2(l, r);
    if (a.first < INF) return a.second;
    return -1;
}

void call(int i, int k, vector<int> &r, vector<int> &h1)
{
    int id = CGet(i - k + 1, i);
    while (id != -1)
    {
        call(id, k, r, h1);
        id = CGet(i - k + 1, i);
    }
    up_right[i] = CGet2(i + 1, i + k);
    up_left[i] = CGet2(i - k + 1, i);
    h1[i] = c--;
    Set2(i, h1[i]);
    CAdd(i - k + 1, i, -1);
    CAdd(i, i + 1, INF);
}

const int LG = 20;

int le[LG][N], ri[LG][N];

void init(int K, vector<int> r)
{
    k = K;
    n = r.size();
    vector<int> h1(n);
    c = n;

    Build(0, n, 0, r);
    Build2();

    int id = CGet(0, n);
    while (id != -1)
    {
        call(id, k, r, h1);
        id = CGet(0, n);
    }
    for (int i = 0; i < n; i++)
    {
        H[i] = h1[i];
    }
    #ifdef LOCAL
    for (int i = 0; i < n; i++)
    {
        cout << H[i] << " ";
    }
    cout << endl;
    #endif // LOCAL
    for (int i = 0; i < n; i++)
    {
        if (up_left[i] != -1)
        {
            le[0][i] = i - up_left[i];
            if (le[0][i] < 0) le[0][i] += n;
        } else le[0][i] = INF;
        if (up_right[i] != -1)
        {
            ri[0][i] = up_right[i] - i;
            if (ri[0][i] < 0) ri[0][i] += n;
        } else ri[0][i] = INF;

        assert(le[0][i] < k || le[0][i] == INF);
        assert(ri[0][i] < k || ri[0][i] == INF);
    }
    for (int j = 1; j < LG; j++)
    {
        for (int i = 0; i < n; i++)
        {
            if (le[j - 1][i] < INF)
                le[j][i] = min(le[j - 1][i] + le[j - 1][((i - le[j - 1][i]) % n + n) % n], INF);
            else
                le[j][i] = INF;
            if (ri[j - 1][i] < INF)
                ri[j][i] = min(ri[j - 1][i] + ri[j - 1][(i + ri[j - 1][i]) % n], INF);
            else
                ri[j][i] = INF;
        }
    }
}

int Dist(int x, int y)
{
    if (x < y) return min(y - x, n - y + x);
    return min(x - y, n - x + y);
}

int compare_plants(int x, int y)
{
    if (Dist(x, y) < k)
    {
        if (H[x] <= H[y]) return -1;
        return 1;
    }
    int d, dist;
    d = x;
    dist = y - x;
    for (int j = 0; j >= 0 && Dist(d, y) >= k; )
    {
        if (ri[j][d] <= dist)
        {
            dist -= ri[j][d];
            d += ri[j][d];
            d = (d % n + n) % n;
        }
        else break;
    }
    assert(dist >= Dist(d, y));

    if (Dist(d, y) < k && H[d] <= H[y]) return -1;

    if (Dist(d, y) >= k)
    {
        assert(ri[0][d] > dist);
    }

    d = x;
    dist = x - y + n;
    for (int j = 0; j >= 0 && Dist(d, y) >= k; )
    {
        if (le[j][d] <= dist)
        {
            dist -= le[j][d];
            d -= le[j][d];
            d = (d % n + n) % n;
        }
        else break;
    }
    assert(dist >= Dist(d, y));

    if (Dist(d, y) < k && H[d] <= H[y]) return -1;

    if (Dist(d, y) >= k)
    {
        assert(le[0][d] > dist);
    }

    swap(x, y);
    d = x;
    dist = y - x + n;
    for (int j = 0; j >= 0 && Dist(d, y) >= k;)
    {
        if (ri[j][d] <= dist)
        {
            dist -= ri[j][d];
            d += ri[j][d];
            d = (d % n + n) % n;
        }
        else break;
    }

    assert(dist >= Dist(d, y));

    if (Dist(d, y) < k && H[d] <= H[y]) return 1;

    if (Dist(d, y) >= k)
    {
        assert(ri[0][d] > dist);
    }

    d = x;
    dist = x - y;
    for (int j = 0; j >= 0 && Dist(d, y) >= k;)
    {
        if (le[j][d] <= dist)
        {
            dist -= le[j][d];
            d -= le[j][d];
            d = (d % n + n) % n;
        }
        else break;
    }
    assert(dist >= Dist(d, y));

    if (Dist(d, y) < k && H[d] <= H[y]) return 1;

    if (Dist(d, y) >= k)
    {
        assert(le[0][d] > dist);
    }

    return 0;
}

#ifdef LOCAL
int main()
{
    int n, k, q;
    cin >> n >> k >> q;
    vector<int> r(n);
    for (int i = 0; i < n; i++) cin >> r[i];
    init(k, r);
    while (q--)
    {
        int x, y;
        cin >> x >> y;
        cout << compare_plants(x, y) << endl;
    }
}
#endif
# Verdict Execution time Memory Grader output
1 Correct 1 ms 640 KB Output is correct
2 Correct 1 ms 640 KB Output is correct
3 Correct 1 ms 640 KB Output is correct
4 Correct 1 ms 640 KB Output is correct
5 Correct 1 ms 640 KB Output is correct
6 Correct 71 ms 3448 KB Output is correct
7 Correct 530 ms 8412 KB Output is correct
8 Correct 569 ms 49244 KB Output is correct
9 Correct 925 ms 49400 KB Output is correct
10 Execution timed out 4066 ms 49272 KB Time limit exceeded
11 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 640 KB Output is correct
2 Correct 1 ms 640 KB Output is correct
3 Correct 1 ms 640 KB Output is correct
4 Correct 1 ms 640 KB Output is correct
5 Correct 1 ms 640 KB Output is correct
6 Correct 5 ms 896 KB Output is correct
7 Correct 87 ms 4800 KB Output is correct
8 Correct 2 ms 768 KB Output is correct
9 Correct 5 ms 1024 KB Output is correct
10 Correct 88 ms 4728 KB Output is correct
11 Correct 87 ms 4600 KB Output is correct
12 Correct 87 ms 4856 KB Output is correct
13 Correct 87 ms 4728 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 640 KB Output is correct
2 Correct 1 ms 640 KB Output is correct
3 Correct 1 ms 640 KB Output is correct
4 Correct 1 ms 640 KB Output is correct
5 Correct 1 ms 640 KB Output is correct
6 Correct 5 ms 896 KB Output is correct
7 Correct 87 ms 4800 KB Output is correct
8 Correct 2 ms 768 KB Output is correct
9 Correct 5 ms 1024 KB Output is correct
10 Correct 88 ms 4728 KB Output is correct
11 Correct 87 ms 4600 KB Output is correct
12 Correct 87 ms 4856 KB Output is correct
13 Correct 87 ms 4728 KB Output is correct
14 Correct 150 ms 8412 KB Output is correct
15 Correct 1200 ms 49268 KB Output is correct
16 Correct 150 ms 8412 KB Output is correct
17 Correct 1240 ms 49272 KB Output is correct
18 Correct 779 ms 49268 KB Output is correct
19 Correct 774 ms 49272 KB Output is correct
20 Correct 1039 ms 49176 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 640 KB Output is correct
2 Correct 1 ms 640 KB Output is correct
3 Incorrect 1101 ms 3924 KB Output isn't correct
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 640 KB Output is correct
2 Correct 1 ms 640 KB Output is correct
3 Correct 1 ms 640 KB Output is correct
4 Correct 1 ms 640 KB Output is correct
5 Incorrect 1 ms 640 KB Output isn't correct
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 640 KB Output is correct
2 Correct 1 ms 640 KB Output is correct
3 Correct 1 ms 640 KB Output is correct
4 Correct 1 ms 640 KB Output is correct
5 Correct 3 ms 896 KB Output is correct
6 Correct 1434 ms 49400 KB Output is correct
7 Correct 2174 ms 49272 KB Output is correct
8 Correct 1339 ms 49108 KB Output is correct
9 Correct 1189 ms 49276 KB Output is correct
10 Execution timed out 4077 ms 49400 KB Time limit exceeded
11 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 640 KB Output is correct
2 Correct 1 ms 640 KB Output is correct
3 Correct 1 ms 640 KB Output is correct
4 Correct 1 ms 640 KB Output is correct
5 Correct 1 ms 640 KB Output is correct
6 Correct 71 ms 3448 KB Output is correct
7 Correct 530 ms 8412 KB Output is correct
8 Correct 569 ms 49244 KB Output is correct
9 Correct 925 ms 49400 KB Output is correct
10 Execution timed out 4066 ms 49272 KB Time limit exceeded
11 Halted 0 ms 0 KB -