#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")
#include <bits/stdc++.h>
#include "treasure.h"
using namespace std;
typedef long long ll;
typedef long double ld;
typedef vector<int> vi;
typedef pair<int, int> pi;
#define debug(x) cerr << #x << ": " << x << endl
#define debug2(x, y) debug(x), debug(y)
#define repn(i, a, b) for(int i = (int)(a); i < (int)(b); i++)
#define rep(i, a) for(int i = 0; i < (int)(a); i++)
#define all(v) v.begin(), v.end()
#define mp make_pair
#define pb push_back
#define lb lower_bound
#define ub upper_bound
#define fi first
#define se second
#define sq(x) ((x) * (x))
const int mxN = 105;
template<class T> T gcd(T a, T b){ return ((b == 0) ? a : gcd(b, a % b)); }
int n, tot;
int l[mxN], r[mxN], u[mxN], d[mxN]; //all of these are inclusive
int LU[mxN][mxN], LD[mxN][mxN], RU[mxN][mxN], RD[mxN][mxN];
map<array<int, 4>, int> vis, ans;
int qry(int r1, int c1, int r2, int c2){
array<int, 4> ar = {r1, c1, r2, c2};
if(vis[ar]) return ans[ar];
vis[ar] = 1;
int ret = countTreasure(r1, c1, r2, c2);
ans[ar] = ret;
return ret;
}
int cst(int r1, int c1, int r2, int c2){
array<int, 4> ar = {r1, c1, r2, c2};
if(vis[ar]) return 0;
return (r2 - r1 + 1) * (c2 - c1 + 1);
}
bool check(int i, int j){
int cur = 0;
if(i > 1) cur += u[i - 1];
if(i < n) cur += d[i + 1];
if(j > 1) cur += l[j - 1];
if(j < n) cur += r[j + 1];
//now we do the intersections
if(i > 1 && j > 1) cur -= LU[i - 1][j - 1];
if(i < n && j > 1) cur -= LD[i + 1][j - 1];
if(i > 1 && j < n) cur -= RU[i - 1][j + 1];
if(i < n && j < n) cur -= RD[i + 1][j + 1];
//assert(cur == tot || cur == (tot - 1));
return cur != tot;
}
void solve(int i, int j, int k){
if(k == 1){
if(~RU[i][j]) return;
int q = qry(1, j, i, n);
RU[i][j] = q;
if(j > 1) LU[i][j - 1] = u[i] - RU[i][j];
if(i < n){
RD[i + 1][j] = r[j] - RU[i][j];
if(j > 1) LD[i + 1][j - 1] = l[j - 1] - LU[i][j - 1];
}
}
if(k == 2){
if(~LU[i][j]) return;
int q = qry(1, 1, i, j);
LU[i][j] = q;
if(i < n) LD[i + 1][j] = l[j] - LU[i][j];
if(j < n){
RU[i][j + 1] = u[i] - LU[i][j];
if(i < n) RD[i + 1][j + 1] = r[j + 1] - RU[i][j + 1];
}
}
if(k == 3){
if(~RD[i][j]) return;
int q = qry(i, j, n, n);
RD[i][j] = q;
if(i > 1) RU[i - 1][j] = r[j] - RD[i][j];
if(j > 1){
LD[i][j - 1] = d[i] - RD[i][j];
if(i > 1) LU[i - 1][j - 1] = l[j - 1] - LD[i][j - 1];
}
}
if(k == 4){
if(~LD[i][j]) return;
int q = qry(i, 1, n, j);
LD[i][j] = q;
if(i > 1) LU[i - 1][j] = l[j] - LD[i][j];
if(j < n){
RD[i][j + 1] = d[i] - LD[i][j];
if(i > 1) RU[i - 1][j + 1] = r[j + 1] - RD[i][j + 1];
}
}
}
int cost(int i, int j, int k){
if(k == 1) return cst(1, j, i, n);
if(k == 2) return cst(1, 1, i, j);
if(k == 3) return cst(i, j, n, n);
if(k == 4) return cst(i, 1, n, j);
}
bool cmp(array<int, 4> a, array<int, 4> b){
return cost(a[1], a[2], a[3]) < cost(b[1], b[2], b[3]);
}
void findTreasure(int N){
n = N;
memset(LD, -1, sizeof(LD));
memset(LU, -1, sizeof(LU));
memset(RD, -1, sizeof(RD));
memset(RU, -1, sizeof(RU));
tot = qry(1, 1, n, n);
//l and r
l[n] = r[1] = tot;
repn(i, 1, n){
if(i > (n - i)) l[i] = qry(1, 1, n, i);
else l[i] = tot - qry(1, i + 1, n, n);
}
repn(i, 2, n + 1) r[i] = tot - l[i - 1];
//u and d
u[n] = d[1] = tot;
repn(i, 1, n){
if(i > (n - i)) u[i] = qry(1, 1, i, n);
else u[i] = tot - qry(i + 1, 1, n, n);
}
repn(i, 2, n + 1) d[i] = tot - u[i - 1];
//corners
repn(i, 1, n + 1){
repn(j, 1, n + 1){
if(i <= (n - i)){
if(j <= (n - j)) solve(i, j, 3);
else solve(i, j, 4);
}
else{
if(j <= (n - j)) solve(i, j, 1);
else solve(i, j, 2);
}
}
}
repn(i, 1, n + 1){
repn(j, 1, n + 1){
if(RU[i][j] == -1){
vector<array<int, 4>> x;
x.pb({i * (n - j + 1), i, j, 1});
if(j > 1) x.pb({i * (j - 1), i, j - 1, 2});
if(i < n) x.pb({(n - i + 2) * (n - j + 1), i + 1, j, 3});
if(i < n && j > 1) x.pb({(n - i + 2) * (j - 1), i + 1, j - 1, 4});
sort(all(x), cmp);
solve(x[0][1], x[0][2], x[0][3]);
}
if(LU[i][j] == -1){
vector<array<int, 4>> x;
if(j < n) x.pb({i * (n - j), i, j + 1, 1});
x.pb({i * j, i, j, 2});
if(i < n && j < n) x.pb({(n - i) * (n - j), i + 1, j + 1, 3});
if(i < n) x.pb({(n - i) * j, i + 1, j, 4});
sort(all(x), cmp);
solve(x[0][1], x[0][2], x[0][3]);
}
if(RD[i][j] == -1){
vector<array<int, 4>> x;
if(i > 1) x.pb({(i - 1) * (n - j + 1), i - 1, j, 1});
if(i > 1 && j > 1) x.pb({(i - 1) * (j - 1), i - 1, j - 1, 2});
x.pb({(n - i + 1) * (n - j + 1), i, j, 3});
if(j > 1) x.pb({(n - i + 1) * (j - 1), i, j - 1, 4});
sort(all(x), cmp);
solve(x[0][1], x[0][2], x[0][3]);
}
if(LD[i][j] == -1){
vector<array<int, 4>> x;
if(i > 1 && j < n) x.pb({(i - 1) * (n - j), i - 1, j + 1, 1});
if(i > 1) x.pb({(i - 1) * j, i - 1, j, 2});
if(j < n) x.pb({(n - i + 1) * (n - j), i, j + 1, 3});
x.pb({(n - i + 1) * j, i, j, 4});
sort(all(x), cmp);
solve(x[0][1], x[0][2], x[0][3]);
}
}
}
repn(i, 1, n + 1){
repn(j, 1, n + 1){
if(check(i, j)) Report(i, j);
}
}
}
/*
Things to look out for:
- Integer overflows
- Array bounds
- Special cases
Be careful!
*/
Compilation message
treasure.cpp: In function 'int cost(int, int, int)':
treasure.cpp:109:1: warning: control reaches end of non-void function [-Wreturn-type]
109 | }
| ^
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Partially correct |
1 ms |
512 KB |
Output is partially correct - N = 5, K = 344, score = 8 |
2 |
Partially correct |
1 ms |
512 KB |
Output is partially correct - N = 10, K = 4875, score = 8 |
3 |
Partially correct |
1 ms |
512 KB |
Output is partially correct - N = 15, K = 23954, score = 8 |
4 |
Partially correct |
1 ms |
512 KB |
Output is partially correct - N = 16, K = 30720, score = 8 |
5 |
Partially correct |
3 ms |
896 KB |
Output is partially correct - N = 55, K = 4088394, score = 8 |
6 |
Partially correct |
4 ms |
1152 KB |
Output is partially correct - N = 66, K = 8445195, score = 8 |
7 |
Partially correct |
5 ms |
1280 KB |
Output is partially correct - N = 77, K = 15611312, score = 8 |
8 |
Partially correct |
6 ms |
1536 KB |
Output is partially correct - N = 88, K = 26577408, score = 8 |
9 |
Partially correct |
7 ms |
1792 KB |
Output is partially correct - N = 99, K = 42517202, score = 8 |
10 |
Partially correct |
8 ms |
1792 KB |
Output is partially correct - N = 100, K = 44250000, score = 8 |