Submission #311161

# Submission time Handle Problem Language Result Execution time Memory
311161 2020-10-09T14:29:05 Z FlowerOfSorrow Organizing the Best Squad (FXCUP4_squad) C++17
100 / 100
984 ms 56520 KB
#include<bits/stdc++.h>
#include<ext/pb_ds/assoc_container.hpp>
#include<ext/pb_ds/tree_policy.hpp>
#include<ext/rope>
using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
template<class L, class R> istream &operator>>(istream &in, pair<L, R> &p){ return in >> p.first >> p.second; }
template<class Tuple, size_t ...Is> void read_tuple(istream &in, Tuple &t, index_sequence<Is...>){ ((in >> get<Is>(t)), ...); }
template<class ...Args> istream &operator>>(istream &in, tuple<Args...> &t){ read_tuple(in, t, index_sequence_for<Args...>{}); return in; }
template<class ...Args, template<class...> class T> istream &operator>>(enable_if_t<!is_same_v<T<Args...>, string>, istream> &in, T<Args...> &arr){ for(auto &x: arr) in >> x; return in; }
template<class L, class R> ostream &operator<<(ostream &out, const pair<L, R> &p){ return out << "(" << p.first << ", " << p.second << ")"; }
// template<class L, class R> ostream &operator<<(ostream &out, const pair<L, R> &p){ return out << p.first << " " << p.second << "\n"; }
template<class Tuple, size_t ...Is> void print_tuple(ostream &out, const Tuple &t, index_sequence<Is...>){ ((out << (Is ? " " : "") << get<Is>(t)), ...); }
template<class ...Args> ostream &operator<<(ostream &out, const tuple<Args...> &t){ print_tuple(out, t, index_sequence_for<Args...>{}); return out << "\n"; }
template<class ...Args, template<class...> class T> ostream &operator<<(enable_if_t<!is_same_v<T<Args...>, string>, ostream> &out, const T<Args...> &arr){ for(auto &x: arr) out << x << " "; return out << "\n"; }
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
mt19937_64 rngll(chrono::steady_clock::now().time_since_epoch().count());
#define all(a) a.begin(), a.end()
#define sz(a) (int)a.size()
typedef long long ll;
typedef vector<int> vi; typedef vector<ll> vl; typedef vector<double> vd; typedef vector<string> vs;
typedef pair<int, int> pii; typedef pair<ll, ll> pll; typedef pair<int, ll> pil; typedef pair<ll, int> pli;
typedef vector<pii> vpii; typedef vector<pil> vpil; typedef vector<pli> vpli; typedef vector<pll> vpll;
template<class T> T ctmax(T &x, const T &y){ return x = max(x, y); }
template<class T> T ctmin(T &x, const T &y){ return x = min(x, y); }
template<class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef tuple<int, int, int> tpl; typedef vector<tpl> vtpl;
 
template<class T = long long> struct point{
	T x, y;
	int ind;
	template<class U> point(const point<U> &otr): x(otr.x), y(otr.y), ind(otr.ind){ }
	template<class U = T, class V = T> point(U x = 0, V y = 0, int ind = -1): x(x), y(y), ind(ind){ }
	template<class U> explicit operator point<U>() const{ return point<U>(static_cast<U>(x), static_cast<U>(y)); }
	T operator*(const point &otr) const{ return x * otr.x + y * otr.y; }
	T operator^(const point &otr) const{ return x * otr.y - y * otr.x; }
	point operator+(const point &otr) const{ return {x + otr.x, y + otr.y}; }
	point &operator+=(const point &otr){ return *this = *this + otr; }
	point operator-(const point &otr) const{ return {x - otr.x, y - otr.y}; }
	point &operator-=(const point &otr){ return *this = *this - otr; }
	point operator-() const{ return {-x, -y}; }
#define scalarop_l(op) friend point operator op(const T &c, const point &p){ return {c op p.x, c op p.y}; }
	scalarop_l(+) scalarop_l(-) scalarop_l(*) scalarop_l(/)
#define scalarop_r(op) point operator op(const T &c) const{ return {x op c, y op c}; }
	scalarop_r(+) scalarop_r(-) scalarop_r(*) scalarop_r(/)
#define scalarapply(op) point &operator op(const T &c){ return *this = *this op c; }
	scalarapply(+=) scalarapply(-=) scalarapply(*=) scalarapply(/=)
#define compareop(op) bool operator op(const point &otr) const{ return tie(x, y) op tie(otr.x, otr.y); }
	compareop(>) compareop(<) compareop(>=) compareop(<=) compareop(==) compareop(!=)
#undef scalarop_l
#undef scalarop_r
#undef scalarapply
#undef compareop
	double norm() const{ return sqrt(x * x + y * y); }
	T squared_norm() const{ return x * x + y * y; }
	double arg() const{ return atan2(y, x); } // [-pi, pi]
	point<double> unit() const{ return point<double>(x, y) / norm(); }
	point perp() const{ return {-y, x}; }
	point<double> normal() const{ return perp().unit(); }
	point<double> rotate(const double &theta) const{ return point<double>(x * cos(theta) - y * sin(theta), x * sin(theta) + y * cos(theta)); }
	point reflect_x() const{ return {x, -y}; }
	point reflect_y() const{ return {-x, y}; }
	point reflect(const point &o) const{ return {2 * o.x - x, 2 * o.y - y}; }
	bool operator||(const point &otr) const{ return !(*this ^ otr); }
};
template<class T> istream &operator>>(istream &in, point<T> &p){ return in >> p.x >> p.y; }
template<class T> ostream &operator<<(ostream &out, const point<T> &p){ return out << "(" << p.x << ", " << p.y << ")"; }
template<class T> double distance(const point<T> &p, const point<T> &q){ return (p - q).norm(); }
template<class T> T squared_distance(const point<T> &p, const point<T> &q){ return (p - q).squared_norm(); }
template<class T, class U, class V> T ori(const point<T> &p, const point<U> &q, const point<V> &r){ return (q - p) ^ (r - p); }
template<class IT> auto doubled_signed_area(IT begin, IT end){
	class iterator_traits<IT>::value_type s = 0, init = *begin;
	for(; begin != prev(end); ++ begin) s += *begin ^ *next(begin);
	return s + (*begin ^ init);
}
template<class T> bool is_sorted(const point<T> &origin, point<T> p, point<T> q, point<T> r){
	p -= origin, q -= origin, r -= origin;
	T x = p ^ r, y = p ^ q, z = q ^ r;
	return x >= 0 && y >= 0 && z >= 0 || x < 0 && (y >= 0 || z >= 0);
}
template<class T, class IT> bool is_sorted(const point<T> &origin, IT begin, IT end){
	for(int i = 0; i < end - begin - 2; ++ i) if(!is_sorted(origin, begin + i, begin + i + 1, begin + i + 2)) return false;
	return true;
}
template<class T = long long> struct line{
	point<T> p, d; // p + d*t
	template<class U = T, class V = T> line(point<U> p = {0, 0}, point<V> q = {0, 0}, bool Two_Points = true): p(p), d(Two_Points ? q - p : q){ }
	template<class U> line(point<U> d): p(), d(static_cast<point<T>>(d)){ }
	line(T a, T b, T c): p(a ? -c / a : 0, !a && b ? -c / b : 0), d(-b, a){ }
	template<class U> explicit operator line<U>() const{ return line<U>(point<U>(p), point<U>(d), false); }
	point<T> q() const{ return p + d; }
	bool degen() const{ return d == point<T>(); }
	tuple<T, T, T> coef() const{ return {d.y, -d.x, d.perp() * p}; } // d.y (X - p.x) - d.x (Y - p.y) = 0
	bool operator||(const line<T> &L) const{ return d || L.d; }
};
template<class T> bool on_line(const point<T> &p, const line<T> &L){
	if(L.degen()) return p == L.p;
	return (p - L.p) || L.d;
}
template<class T> bool on_ray(const point<T> &p, const line<T> &L){
	if(L.degen()) return p == L.p;
	auto a = L.p - p, b = L.q() - p;
	return (a || b) && a * L.d <= 0;
}
template<class T> bool on_segment(const point<T> &p, const line<T> &L){
	if(L.degen()) return p == L.p;
	auto a = L.p - p, b = L.q() - p;
	return (a || b) && a * b <= 0;
}
template<class T> double distance_to_line(const point<T> &p, const line<T> &L){
	if(L.degen()) return distance(p, L.p);
	return abs((p - L.p) ^ L.d) / L.d.norm();
}
template<class T> double distance_to_ray(const point<T> &p, const line<T> &L){
	if((p - L.p) * L.d <= 0) return distance(p, L.p);
	return distance_to_line(p, L);
}
template<class T> double distance_to_segment(const point<T> &p, const line<T> &L){
	if((p - L.p) * L.d <= 0) return distance(p, L.p);
	if((p - L.q()) * L.d >= 0) return distance(p, L.q());
	return distance_to_line(p, L);
}
template<class T> point<double> projection(const point<T> &p, const line<T> &L){ return static_cast<point<double>>(L.p) + (L.degen() ? point<double>() : (p - L.p) * L.d / L.d.norm() * static_cast<point<double>>(L.d)); }
template<class T> point<double> reflection(const point<T> &p, const line<T> &L){ return 2.0 * projection(p, L) - static_cast<point<double>>(p); }
template<class T> point<double> closest_point_on_segment(const point<T> &p, const line<T> &L){ return (p - L.p) * L.d <= 0 ? static_cast<point<double>>(L.p) : ((p - L.q()) * L.d >= 0 ? static_cast<point<double>>(L.q()) : projection(p, L)); }
template<int TYPE> struct EndpointChecker{ };
// For rays
template<> struct EndpointChecker<0>{ template<class T> bool operator()(const T& a, const T& b) const{ return true; } }; // For ray
// For closed end
template<> struct EndpointChecker<1>{ template<class T> bool operator()(const T& a, const T& b) const{ return a <= b; } }; // For closed end
// For open end
template<> struct EndpointChecker<2>{ template<class T> bool operator()(const T& a, const T& b) const{ return a < b; } }; // For open end
// Assumes parallel lines do not intersect
template<int LA, int LB, int RA, int RB, class T> pair<bool, point<double>> intersect_no_parallel_overlap(const line<T> &L, const line<T> &M){
	auto s = L.d ^ M.d;
	if(!s) return {false, point<double>()};
	auto ls = (M.p - L.p) ^ M.d, rs = (M.p - L.p) ^ L.d;
	if(s < 0) s = -s, ls = -ls, rs = -rs;
	bool intersect = EndpointChecker<LA>()(decltype(ls)(0), ls) && EndpointChecker<LB>()(ls, s) && EndpointChecker<RA>()(decltype(rs)(0), rs) && EndpointChecker<RB>()(rs, s);
	return {intersect, static_cast<point<double>>(L.p) + 1.0 * ls / s * static_cast<point<double>>(L.d)};
}
// Assumes parallel lines do not intersect
template<class T> pair<bool, point<double>> intersect_closed_segments_no_parallel_overlap(const line<T> &L, const line<T> &M){
	return intersect_no_parallel_overlap<1, 1, 1, 1>(L, M);
}
// Assumes nothing
template<class T> pair<bool, line<double>> intersect_closed_segments(const line<T> &L, const line<T> &M){
	auto s = L.d ^ M.d, ls = (M.p - L.p) ^ M.d;
	if(!s){
		if(ls) return {false, line<double>()};
		auto Lp = L.p, Lq = L.q(), Mp = M.p, Mq = M.q();
		if(Lp > Lq) swap(Lp, Lq);
		if(Mp > Mq) swap(Mp, Mq);
		line<double> res(max(Lp, Mp), min(Lq, Mq));
		return {res.d >= point<double>(), res};
	}
	auto rs = (M.p - L.p) ^ L.d;
	if(s < 0) s = -s, ls = -ls, rs = -rs;
	bool intersect = 0 <= ls && ls <= s && 0 <= rs && rs <= s;
	return {intersect, line<double>(static_cast<point<double>>(L.p) + 1.0 * ls / s * static_cast<point<double>>(L.d), point<double>())};
}
template<class T> double distance_between_rays(const line<T> &L, const line<T> &M){
	if(L || M){
		if(L.d * M.d >= 0 || (M.p - L.p) * M.d <= 0) return distance_to_line(L.p, M);
		else return distance(L.p, M.p);
	}
	else{
		if(intersect_no_parallel_overlap<1, 0, 1, 0, long long>(L, M).first) return 0;
		else return min(distance_to_ray(L.p, M), distance_to_ray(M.p, L));
	}
}
template<class T> double distance_between_segments(const line<T> &L, const line<T> &M){
	if(intersect_closed_segments(L, M).first) return 0;
	return min({distance_to_segment(L.p, M), distance_to_segment(L.q(), M), distance_to_segment(M.p, L), distance_to_segment(M.q(), L)});
}
template<class P> struct compare_by_angle{
	const P origin;
	compare_by_angle(const P &origin = P()): origin(origin){ }
	bool operator()(const P &p, const P &q) const{ return ori(origin, p, q) > 0; }
};
template<class It, class P> void sort_by_angle(It begin, It end, const P &origin){
	begin = partition(begin, end, [&origin](const decltype(*begin) &point){ return point == origin; });
	auto pivot = partition(begin, end, [&origin](const decltype(*begin) &point) { return point > origin; });
	compare_by_angle<P> cmp(origin);
	sort(begin, pivot, cmp), sort(pivot, end, cmp);
}
/* Short Descriptions
struct point{
	T x, y;
	int ind;
	double norm()
	T squared_norm()
	double arg()
	point<double> unit()
	point perp()
	point<double> normal()
	point<double> rotate(double theta)
	point reflect_x()
	point reflect_y()
	point reflect(point o)
	bool operator||(point otr)
};
double distance(point p, point q)
T squared_distance(point p, point q)
T ori(point p, point q, point r)
auto doubled_signed_area(IT begin, IT end)
bool is_sorted(point o, point p, point q, point r)
bool is_sorted(point o, IT begin, IT end)
struct line{
	point p, d; // p + d*t
	line(point p = {0, 0}, point<V> q = {0, 0}, bool Two_Points = true)
	// two_points: pass through p and q
	// else: pass through p, slope q
	line(point<U> d) // pass through origin, slope d
	line(T a, T b, T c) // declare with ax + by + c = 0
	point<T> q()
	bool degen()
	tuple<T, T, T> coef()// d.y (X - p.x) - d.x (Y - p.y) = 0
};
bool on_line(point, line)
bool on_ray(point, line)
bool on_segment(point, line)
double distance_to_line(point, line)
double distance_to_ray(point, line)
double distance_to_segment(point, line)
point<double> projection(point, line)
point<double> reflection(point, line)
point<double> closest_point_on_segment(point, line)
// Endpoints: (0: rays), (1: closed), (2: open)
// Assumes parallel lines do not intersect
pair<bool, point<double>> intersect_no_parallel_overlap<EP1, EP2, EP3, EP4>(line, line)
// Assumes parallel lines do not intersect
pair<bool, point<double>> intersect_closed_segments_no_parallel_overlap(line, line)
// Assumes nothing
pair<bool, line<double>> intersect_closed_segments(line, line)
double distance_between_rays(line, line)
double distance_between_segments(line, line)
struct compare_by_angle
void sort_by_angle(It begin, It end, const P &origin) */
 
template<class Polygon>
struct convex_hull: pair<Polygon, Polygon>{ // (Lower, Upper) type {0: both, 1: lower, 2: upper}
	int type;
	convex_hull(Polygon arr = Polygon(), int type = 0, bool is_sorted = false): type(type){
		if(!is_sorted) sort(all(arr)), arr.resize(unique(all(arr)) - arr.begin());
#define ADDP(C, cmp) while(sz(C) > 1 && ori(C[sz(C) - 2], p, C.back()) cmp 0) C.pop_back(); C.push_back(p);
		for(auto &p: arr){
			if(type < 2){ ADDP(this->first, >=) }
			if(!(type & 1)){ ADDP(this->second, <=) }
		}
		reverse(all(this->second));
	}
	Polygon get_hull() const{
		if(type) return type == 1 ? this->first : this->second;
		if(sz(this->first) <= 1) return this->first;
		Polygon res(this->first);
		res.insert(res.end(), ++ this->second.begin(), -- this->second.end());
		return res;
	}
	int min_element(const class Polygon::value_type &p) const{
		assert(p.y >= 0 && !this->first.empty());
		int low = 0, high = sz(this->first);
		while(high - low > 2){
			int mid1 = (2 * low + high) / 3, mid2 = (low + 2 * high) / 3;
			p * this->first[mid1] >= p * this->first[mid2] ? low = mid1 : high = mid2;
		}
		int res = low;
		for(int i = low + 1; i < high; i ++) if(p * this->first[res] > p * this->first[i]) res = i;
		return res;
	}
	int max_element(const class Polygon::value_type &p) const{
		assert(p.y >= 0 && !this->second.empty());
		int low = 0, high = sz(this->second);
		while(high - low > 2){
			int mid1 = (2 * low + high) / 3, mid2 = (low + 2 * high) / 3;
			p * this->second[mid1] <= p * this->second[mid2] ? low = mid1 : high = mid2;
		}
		int res = low;
		for(int i = low + 1; i < high; ++ i) if(p * this->second[res] < p * this->second[i]) res = i;
		return res;
	}
	Polygon linearize() const{
		if(type == 1) return this->first;
		if(type == 2){ Polygon res(this->second); reverse(all(res)); return res; }
		if(sz(this->first) <= 1) return this->first;
		Polygon res;
		res.reserve(sz(this->first) + sz(this->second));
		merge(all(this->first), ++ this->second.rbegin(), -- this->second.rend(), back_inserter(res));
		return res;
	}
	convex_hull operator^(const convex_hull &otr) const{
		Polygon temp, A = linearize(), B = otr.linearize();
		temp.reserve(sz(A) + sz(B));
		merge(all(A), all(B), back_inserter(temp));
		return {temp, type, true};
	}
	pair<Polygon, Polygon> get_boundary() const{
		Polygon L(this->first), R(this->second);
		for(int i = 1; i < sz(this->first); ++ i) L[i] -= L[0];
		for(int i = 1; i < sz(this->second); ++ i) R[i] -= R[0];
		return {L, R};
	}
	convex_hull operator+(const convex_hull &otr) const{
		assert(type == otr.type);
		compare_by_angle<class Polygon::value_type> cmp;
		convex_hull res;
		pair<Polygon, Polygon> A(this->get_boudnary()), B(otr.get_boudnary());
#define PROCESS(COND, X) \
if(COND && !A.X.empty() && !B.X.empty()){ \
	res.X.reserve(sz(A.X) + sz(B.X)); \
	res.X.push_back(A.X.front() + B.X.front()); \
	merge(A.X.begin() + 1, A.X.end(), B.X.begin() + 1, B.X.end(), back_inserter(res.X)); \
	for(int i = 1; i < sz(res.X); ++ i) res.X[i] += res.X[i - 1]; \
}
		PROCESS(type < 2, first)
		PROCESS(!(type & 1), second)
		return res;
	}
};
 
int n, na, nb;
vector<vector<convex_hull<vector<point<long long>>>>> CH(2); // CH[i][j]: i=0(attack), i=1(defence), j=0(best), j=1(second best)
void Init(vi A, vi D, vi P){
	n = sz(A);
	vector<point<ll>> a(n), d(n);
	for(int i = 0; i < n; ++ i){
		a[i] = {A[i], P[i]};
		d[i] = {D[i], P[i]};
		a[i].ind = d[i].ind = i;
	}
	for(int k = 0; k < 2; ++ k){
		CH[k].emplace_back(k ? d : a, 2);
		vi used(n);
		for(auto &p: CH[k][0].second){
			used[p.ind] = true;
		}
		vector<point<ll>> temp;
		for(int i = 0; i < n; ++ i){
			if(!used[i]){
				temp.push_back(k ? d[i] : a[i]);
			}
		}
		CH[k].emplace_back(temp, 2);
	}
	na = sz(CH[0][0].second), nb = sz(CH[1][0].second);
}
ll BestSquad(int X, int Y){
	int ia = CH[0][0].max_element({X, Y}), ib = CH[1][0].max_element({X, Y});
	auto eval = [&](int i, int j, int k){
		return CH[i][j].second[k] * point(X, Y);
	};
	if(CH[0][0].second[ia].ind == CH[1][0].second[ib].ind){
		ll res = max(eval(0, 0, ia) + max(eval(1, 0, (ib - 1 + nb) % nb), eval(1, 0, (ib + 1) % nb)), max(eval(0, 0, (ia - 1 + na) % na), eval(0, 0, (ia + 1) % na)) + eval(1, 0, ib));
		if(!CH[1][1].second.empty()){
			ctmax(res, eval(0, 0, ia) + eval(1, 1, CH[1][1].max_element({X, Y})));
		}
		if(!CH[0][1].second.empty()){
			ctmax(res, eval(0, 1, CH[0][1].max_element({X, Y})) + eval(1, 0, ib));
		}
		return res;
	}
	else{
		return eval(0, 0, ia) + eval(1, 0, ib);
	}
}
 
/*int main(){
	cin.tie(0)->sync_with_stdio(0);
	Init({3, 3, 5, 2, 1}, {2, 1, 1, 1, 4}, {5, 4, 3, 1, 2});
	cout << BestSquad(2, 5) << "\n";
	return 0;
}*/
 
/*
5
3 2 5
3 1 4
5 1 3
2 1 1
1 4 2
1
2 5
*/
 
////////////////////////////////////////////////////////////////////////////////////////
//                                                                                    //
//                                   Coded by Aeren                                   //
//                                                                                    //
////////////////////////////////////////////////////////////////////////////////////////
# Verdict Execution time Memory Grader output
1 Correct 1 ms 256 KB Output is correct
2 Correct 1 ms 512 KB Output is correct
3 Correct 341 ms 51048 KB Output is correct
4 Correct 370 ms 51052 KB Output is correct
5 Correct 18 ms 4392 KB Output is correct
6 Correct 263 ms 56392 KB Output is correct
7 Correct 264 ms 56328 KB Output is correct
8 Correct 265 ms 56300 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 256 KB Output is correct
2 Correct 4 ms 892 KB Output is correct
3 Correct 500 ms 43948 KB Output is correct
4 Correct 499 ms 50920 KB Output is correct
5 Correct 23 ms 2780 KB Output is correct
6 Correct 647 ms 50496 KB Output is correct
7 Correct 662 ms 50500 KB Output is correct
8 Correct 656 ms 50504 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 256 KB Output is correct
2 Correct 1 ms 512 KB Output is correct
3 Correct 341 ms 51048 KB Output is correct
4 Correct 370 ms 51052 KB Output is correct
5 Correct 18 ms 4392 KB Output is correct
6 Correct 263 ms 56392 KB Output is correct
7 Correct 264 ms 56328 KB Output is correct
8 Correct 265 ms 56300 KB Output is correct
9 Correct 1 ms 256 KB Output is correct
10 Correct 4 ms 892 KB Output is correct
11 Correct 500 ms 43948 KB Output is correct
12 Correct 499 ms 50920 KB Output is correct
13 Correct 23 ms 2780 KB Output is correct
14 Correct 647 ms 50496 KB Output is correct
15 Correct 662 ms 50500 KB Output is correct
16 Correct 656 ms 50504 KB Output is correct
17 Correct 77 ms 3948 KB Output is correct
18 Correct 6 ms 1004 KB Output is correct
19 Correct 524 ms 51048 KB Output is correct
20 Correct 535 ms 50992 KB Output is correct
21 Correct 32 ms 3016 KB Output is correct
22 Correct 948 ms 56520 KB Output is correct
23 Correct 984 ms 56388 KB Output is correct
24 Correct 962 ms 56388 KB Output is correct