#include <bits/stdc++.h>
#define pb push_back
#define eb emplace_back
#define sz(V) ((int)(V).size())
#define allv(V) ((V).begin()),((V).end())
#define befv(V) ((V)[(sz(V)-2)])
#define sorv(V) sort(allv(V))
#define revv(V) reverse(allv(V))
#define univ(V) (V).erase(unique(allv(V)),(V).end())
#define clv(V) (V).clear()
#define upmin(a,b) (a)=min((a),(b))
#define upmax(a,b) (a)=max((a),(b))
#define rb(x) ((x)&(-(x)))
#define INF (0x3f3f3f3f)
#define INFLL (0x3f3f3f3f3f3f3f3fll)
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ld, ld> pdd;
const ld EPS = ld(1e-8)/2;
bool isZero(ld n) { return abs(n) < EPS; }
bool isSame(ld a, ld b) { return isZero(a-b); }
ld pw(ld n) { return n*n; }
ld size(pdd a) { return sqrt(pw(a.first) + pw(a.second)); }
int sign(ld n) { return isZero(n) ? 0 : (0 < n ? 1 : -1); }
struct Vec {
Vec(ld x = 0, ld y = 0, ld z = 0) : x(x), y(y), z(z) {}
ld x, y, z;
bool operator == (const Vec& t) const {
return isZero(x - t.x) && isZero(y - t.y) && isZero(z - t.z);
}
Vec operator + (const Vec& t) const { return Vec(x+t.x, y+t.y, z+t.z); }
Vec operator - (const Vec& t) const { return Vec(x-t.x, y-t.y, z-t.z); }
Vec operator * (const ld& t) const { return Vec(x*t, y*t, z*t); }
Vec operator / (const ld& t) const { return Vec(x/t, y/t, z/t); }
Vec operator * (const Vec& t) const { return Vec(y*t.z - z*t.y, z*t.x - x*t.z, x*t.y - y*t.x); }
ld operator / (const Vec& t) const { return x*t.x + y*t.y + z*t.z; }
ld len() const { return sqrt(x*x + y*y + z*z); }
ld pwlen() const { return x*x + y*y + z*z; }
void norm() {
const ld L = len();
if(!isZero(L)) *this = *this / L;
}
};
typedef vector<Vec> Cec;
ld ccw(const Vec& a, const Vec& b, const Vec& c) { return ((b-a) * (c-a)).len(); }
// a -- b -- c : True, Otherwise : False
bool isbet(Vec a, Vec b, Vec c) {
if(a == b || b == c) return true;
ld x = (b-a).pwlen(), y = (c-b).pwlen(), z = (c-a).pwlen();
if(!isZero(x*y*4 - pw(x+y-z))) return false;
if(a.x < c.x && (b.x < a.x-EPS || c.x+EPS < b.x)) return false;
if(a.x > c.x && (b.x < c.x-EPS || a.x+EPS < b.x)) return false;
if(a.y < c.y && (b.y < a.y-EPS || c.y+EPS < b.y)) return false;
if(a.y > c.y && (b.y < c.y-EPS || a.y+EPS < b.y)) return false;
return true;
}
bool isco(Vec a, Vec b, Vec c) { return isZero(ccw(a, b, c)); }
pair<Vec, bool> intersect(Vec a, Vec b, Vec c, Vec d) {
Vec u = b-a, v = d-c, z = c-a, vz = v*z, vu = v*u;
if(isZero(vu.len())) return {Vec(), false};
return {a + u * (vz.len() / vu.len() * sign(vz / vu)), true};
}
Vec project(Vec a, Vec b, Vec c) { b.norm(); return b * ((c-a) / b) + a; }
const int MAXN = 205;
double D[MAXN*2][MAXN*2];
Vec A[MAXN], B[MAXN];
int SPI[MAXN];
const int CPV[28][5] = {
{1, 0}, {1, 1}, {1, 2}, {1, 3},
{2, 0, 1}, {2, 1, 2}, {2, 2, 3}, {2, 3, 0},
{2, 1, 0}, {2, 2, 1}, {2, 3, 2}, {2, 0, 3},
{3, 0, 1, 2}, {3, 1, 2, 3}, {3, 2, 3, 0}, {3, 3, 0, 1},
{3, 2, 1, 0}, {3, 3, 2, 1}, {3, 0, 3, 2}, {3, 1, 0, 3},
{4, 0, 1, 2, 3}, {4, 1, 2, 3, 0}, {4, 2, 3, 0, 1}, {4, 3, 0, 1, 2},
{4, 3, 2, 1, 0}, {4, 2, 1, 0, 3}, {4, 1, 0, 3, 2}, {4, 0, 3, 2, 1}
};
Vec BP[4], CP[4];
Vec lv;
double Ans;
int N, C;
bool isp(Vec a, Vec b) {
if(a == b) return true;
Vec ret; bool chk;
for(int i = 0; i < 4; i++) {
tie(ret, chk) = intersect(a, b, BP[i], BP[(i+1)%4]);
if(chk && isbet(BP[i], ret, BP[(i+1)%4]) && isbet(a, ret, b))
return false;
}
return true;
}
bool ispl(Vec a, Vec b) {
if(a == b) return false;
Vec ret; bool chk;
tie(ret, chk) = intersect(a, b, Vec(), lv);
return chk && EPS < ret.x && EPS < ret.y && isbet(a, ret, b);
}
void upd(Cec V, ld &reta, ld &retb) {
ld ret = 0;
bool flag = false;
for(int i = 1, n = sz(V); i < n; i++) {
if(!isp(V[i-1], V[i])) return;
flag ^= ispl(V[i-1], V[i]);
ret += (V[i] - V[i-1]).len();
}
if(flag) upmin(retb, ret);
else upmin(reta, ret);
}
void upd1(Vec a, Vec b, Vec c, ld &reta, ld &retb) {
Vec p = project(b, c-b, a);
if(!isbet(b, p, c)) return;
upd(Cec{a, p}, reta, retb);
}
void f(Vec ps, Vec pe, Vec qs, Vec qe, ld &reta, ld &retb, bool iss) {
reta = retb = INFLL;
if(!iss) {
upd(Cec{ps, qs}, reta, retb);
upd(Cec{ps, qe}, reta, retb);
upd(Cec{pe, qs}, reta, retb);
upd(Cec{pe, qe}, reta, retb);
upd1(ps, qs, qe, reta, retb);
upd1(pe, qs, qe, reta, retb);
upd1(qs, ps, pe, reta, retb);
upd1(qe, ps, pe, reta, retb);
}
for(int cpvi = 0, cpvsz; cpvi < 28; cpvi++) {
cpvsz = CPV[cpvi][0];
if(iss && cpvsz < 3) continue;
Cec PV, QV;
PV.eb(ps); PV.eb(pe); QV.eb(qs); QV.eb(qe);
{
Vec p = project(ps, pe-ps, CP[CPV[cpvi][1]]);
if(isbet(ps, p, pe)) PV.eb(p);
}
{
Vec p = project(qs, qe-qs, CP[CPV[cpvi][cpvsz]]);
if(isbet(qs, p, qe)) QV.eb(p);
}
Vec ph, qh;
{
ld pl = INFLL;
for(auto &p : PV) {
ld t = (p - CP[CPV[cpvi][1]]).len();
if(pl <= t) continue;
ph = p; pl = t;
}
}
{
ld ql = INFLL;
for(auto &p : QV) {
ld t = (p - CP[CPV[cpvi][cpvsz]]).len();
if(ql <= t) continue;
qh = p; ql = t;
}
}
Cec Path;
Path.eb(ph);
for(int i = 1; i <= cpvsz; i++)
Path.eb(CP[CPV[cpvi][i]]);
Path.eb(qh);
upd(Path, reta, retb);
}
}
int main() {
ios_base::sync_with_stdio(0); cin.tie(0);
srand(20010610);
lv.x = ld(rand() % 708790 + 337) / ld(rand() % 900 + 755);
lv.y = ld(rand() % 632048 + 469) / ld(rand() % 908 + 147);
cin >> N >> C;
for(int i = 1; i <= N; i++)
cin >> A[i].x >> A[i].y >> B[i].x >> B[i].y;
{
ld CEPS = ld(1e-5);
BP[0] = Vec(ld(C) - CEPS, ld(C) - CEPS);
BP[1] = Vec(ld(C) - CEPS, ld(-C) + CEPS);
BP[2] = Vec(ld(-C) + CEPS, ld(-C) + CEPS);
BP[3] = Vec(ld(-C) + CEPS, ld(C) - CEPS);
CP[0] = Vec(C, C);
CP[1] = Vec(C, -C);
CP[2] = Vec(-C, -C);
CP[3] = Vec(-C, C);
}
{
ld CEPS = ld(1e-4)/2;
for(int i = N; i; i--) {
Vec a = A[i], b = B[i];
if(!ispl(a, b)) continue;
Vec p = intersect(a, b, Vec(), lv).first;
Vec v = p-a; v.norm(); v = v * CEPS;
N++; A[N] = a; B[N] = p-v;
A[i] = p+v; B[i] = b;
SPI[i] = N;
}
}
for(int i = 1; i <= N; i++) for(int j = i; j <= N; j++) {
ld a, b; f(A[i], B[i], A[j], B[j], a, b, i == j);
D[i*2][j*2] = D[i*2-1][j*2-1] = D[j*2][i*2] = D[j*2-1][i*2-1] = a;
D[i*2-1][j*2] = D[i*2][j*2-1] = D[j*2-1][i*2] = D[j*2][i*2-1] = b;
}
for(int i = 1; i <= N; i++) {
D[i*2][i*2] = D[i*2-1][i*2-1] = 0;
int t = SPI[i];
if(t) D[i*2][t*2-1] = D[i*2-1][t*2] = D[t*2][i*2-1] = D[t*2-1][i*2] = 0;
}
for(int k = 1; k <= N*2; k++) for(int i = 1; i <= N*2; i++) for(int j = 1; j <= N*2; j++)
upmin(D[i][j], D[i][k] + D[k][j]);
Ans = ld(C) * 8;
for(int i = 1; i <= N; i++) upmin(Ans, D[i*2][i*2-1]);
printf("%.10lf\n", Ans);
return 0;
}
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1 ms |
384 KB |
Output is correct |
2 |
Correct |
1 ms |
384 KB |
Output is correct |
3 |
Correct |
1 ms |
384 KB |
Output is correct |
4 |
Correct |
1 ms |
384 KB |
Output is correct |
5 |
Correct |
1 ms |
436 KB |
Output is correct |
6 |
Correct |
1 ms |
384 KB |
Output is correct |
7 |
Correct |
1 ms |
384 KB |
Output is correct |
8 |
Correct |
1 ms |
384 KB |
Output is correct |
9 |
Correct |
1 ms |
384 KB |
Output is correct |
10 |
Correct |
1 ms |
384 KB |
Output is correct |
11 |
Correct |
1 ms |
384 KB |
Output is correct |
12 |
Correct |
1 ms |
384 KB |
Output is correct |
13 |
Correct |
1 ms |
384 KB |
Output is correct |
14 |
Correct |
1 ms |
384 KB |
Output is correct |
15 |
Correct |
1 ms |
384 KB |
Output is correct |
16 |
Correct |
1 ms |
384 KB |
Output is correct |
17 |
Correct |
1 ms |
384 KB |
Output is correct |
18 |
Correct |
1 ms |
384 KB |
Output is correct |
19 |
Correct |
1 ms |
384 KB |
Output is correct |
20 |
Correct |
1 ms |
384 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1 ms |
384 KB |
Output is correct |
2 |
Correct |
1 ms |
384 KB |
Output is correct |
3 |
Correct |
1 ms |
384 KB |
Output is correct |
4 |
Correct |
1 ms |
384 KB |
Output is correct |
5 |
Correct |
1 ms |
436 KB |
Output is correct |
6 |
Correct |
1 ms |
384 KB |
Output is correct |
7 |
Correct |
1 ms |
384 KB |
Output is correct |
8 |
Correct |
1 ms |
384 KB |
Output is correct |
9 |
Correct |
1 ms |
384 KB |
Output is correct |
10 |
Correct |
1 ms |
384 KB |
Output is correct |
11 |
Correct |
1 ms |
384 KB |
Output is correct |
12 |
Correct |
1 ms |
384 KB |
Output is correct |
13 |
Correct |
1 ms |
384 KB |
Output is correct |
14 |
Correct |
1 ms |
384 KB |
Output is correct |
15 |
Correct |
1 ms |
384 KB |
Output is correct |
16 |
Correct |
1 ms |
384 KB |
Output is correct |
17 |
Correct |
1 ms |
384 KB |
Output is correct |
18 |
Correct |
1 ms |
384 KB |
Output is correct |
19 |
Correct |
1 ms |
384 KB |
Output is correct |
20 |
Correct |
1 ms |
384 KB |
Output is correct |
21 |
Correct |
2 ms |
384 KB |
Output is correct |
22 |
Correct |
4 ms |
384 KB |
Output is correct |
23 |
Correct |
3 ms |
384 KB |
Output is correct |
24 |
Correct |
3 ms |
384 KB |
Output is correct |
25 |
Correct |
3 ms |
384 KB |
Output is correct |
26 |
Correct |
5 ms |
512 KB |
Output is correct |
27 |
Correct |
2 ms |
384 KB |
Output is correct |
28 |
Correct |
3 ms |
384 KB |
Output is correct |
29 |
Correct |
3 ms |
384 KB |
Output is correct |
30 |
Correct |
4 ms |
384 KB |
Output is correct |
31 |
Correct |
3 ms |
384 KB |
Output is correct |
32 |
Correct |
3 ms |
384 KB |
Output is correct |
33 |
Correct |
4 ms |
384 KB |
Output is correct |
34 |
Correct |
4 ms |
384 KB |
Output is correct |
35 |
Correct |
5 ms |
384 KB |
Output is correct |
36 |
Correct |
5 ms |
384 KB |
Output is correct |
37 |
Correct |
3 ms |
384 KB |
Output is correct |
38 |
Correct |
1 ms |
384 KB |
Output is correct |
39 |
Correct |
3 ms |
384 KB |
Output is correct |
40 |
Correct |
1 ms |
384 KB |
Output is correct |
41 |
Correct |
1 ms |
384 KB |
Output is correct |
42 |
Correct |
2 ms |
384 KB |
Output is correct |
43 |
Correct |
2 ms |
384 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1 ms |
384 KB |
Output is correct |
2 |
Correct |
1 ms |
384 KB |
Output is correct |
3 |
Correct |
1 ms |
384 KB |
Output is correct |
4 |
Correct |
1 ms |
384 KB |
Output is correct |
5 |
Correct |
1 ms |
436 KB |
Output is correct |
6 |
Correct |
1 ms |
384 KB |
Output is correct |
7 |
Correct |
1 ms |
384 KB |
Output is correct |
8 |
Correct |
1 ms |
384 KB |
Output is correct |
9 |
Correct |
1 ms |
384 KB |
Output is correct |
10 |
Correct |
1 ms |
384 KB |
Output is correct |
11 |
Correct |
1 ms |
384 KB |
Output is correct |
12 |
Correct |
1 ms |
384 KB |
Output is correct |
13 |
Correct |
1 ms |
384 KB |
Output is correct |
14 |
Correct |
1 ms |
384 KB |
Output is correct |
15 |
Correct |
1 ms |
384 KB |
Output is correct |
16 |
Correct |
1 ms |
384 KB |
Output is correct |
17 |
Correct |
1 ms |
384 KB |
Output is correct |
18 |
Correct |
1 ms |
384 KB |
Output is correct |
19 |
Correct |
1 ms |
384 KB |
Output is correct |
20 |
Correct |
1 ms |
384 KB |
Output is correct |
21 |
Correct |
2 ms |
384 KB |
Output is correct |
22 |
Correct |
4 ms |
384 KB |
Output is correct |
23 |
Correct |
3 ms |
384 KB |
Output is correct |
24 |
Correct |
3 ms |
384 KB |
Output is correct |
25 |
Correct |
3 ms |
384 KB |
Output is correct |
26 |
Correct |
5 ms |
512 KB |
Output is correct |
27 |
Correct |
2 ms |
384 KB |
Output is correct |
28 |
Correct |
3 ms |
384 KB |
Output is correct |
29 |
Correct |
3 ms |
384 KB |
Output is correct |
30 |
Correct |
4 ms |
384 KB |
Output is correct |
31 |
Correct |
3 ms |
384 KB |
Output is correct |
32 |
Correct |
3 ms |
384 KB |
Output is correct |
33 |
Correct |
4 ms |
384 KB |
Output is correct |
34 |
Correct |
4 ms |
384 KB |
Output is correct |
35 |
Correct |
5 ms |
384 KB |
Output is correct |
36 |
Correct |
5 ms |
384 KB |
Output is correct |
37 |
Correct |
3 ms |
384 KB |
Output is correct |
38 |
Correct |
1 ms |
384 KB |
Output is correct |
39 |
Correct |
3 ms |
384 KB |
Output is correct |
40 |
Correct |
1 ms |
384 KB |
Output is correct |
41 |
Correct |
1 ms |
384 KB |
Output is correct |
42 |
Correct |
2 ms |
384 KB |
Output is correct |
43 |
Correct |
2 ms |
384 KB |
Output is correct |
44 |
Correct |
770 ms |
1140 KB |
Output is correct |
45 |
Correct |
653 ms |
1272 KB |
Output is correct |
46 |
Correct |
572 ms |
1152 KB |
Output is correct |
47 |
Correct |
496 ms |
1144 KB |
Output is correct |
48 |
Correct |
647 ms |
1024 KB |
Output is correct |
49 |
Correct |
664 ms |
1144 KB |
Output is correct |
50 |
Correct |
593 ms |
1096 KB |
Output is correct |
51 |
Correct |
534 ms |
1024 KB |
Output is correct |
52 |
Correct |
607 ms |
1236 KB |
Output is correct |
53 |
Correct |
571 ms |
1144 KB |
Output is correct |
54 |
Correct |
643 ms |
1144 KB |
Output is correct |
55 |
Correct |
589 ms |
1084 KB |
Output is correct |
56 |
Correct |
600 ms |
1024 KB |
Output is correct |
57 |
Correct |
565 ms |
1084 KB |
Output is correct |
58 |
Correct |
568 ms |
1144 KB |
Output is correct |
59 |
Correct |
610 ms |
1112 KB |
Output is correct |
60 |
Correct |
575 ms |
1024 KB |
Output is correct |
61 |
Correct |
629 ms |
1144 KB |
Output is correct |
62 |
Correct |
9 ms |
384 KB |
Output is correct |
63 |
Correct |
7 ms |
384 KB |
Output is correct |
64 |
Correct |
555 ms |
1092 KB |
Output is correct |
65 |
Correct |
507 ms |
1024 KB |
Output is correct |
66 |
Correct |
450 ms |
1024 KB |
Output is correct |
67 |
Correct |
892 ms |
1152 KB |
Output is correct |
68 |
Correct |
907 ms |
1188 KB |
Output is correct |
69 |
Correct |
549 ms |
1196 KB |
Output is correct |
70 |
Correct |
474 ms |
1144 KB |
Output is correct |
71 |
Correct |
532 ms |
1144 KB |
Output is correct |
72 |
Correct |
510 ms |
1144 KB |
Output is correct |