Submission #305617

# Submission time Handle Problem Language Result Execution time Memory
305617 2020-09-23T17:22:07 Z youngyojun Fences (JOI18_fences) C++17
100 / 100
907 ms 1272 KB
#include <bits/stdc++.h>
#define pb push_back
#define eb emplace_back
#define sz(V) ((int)(V).size())
#define allv(V) ((V).begin()),((V).end())
#define befv(V) ((V)[(sz(V)-2)])
#define sorv(V) sort(allv(V))
#define revv(V) reverse(allv(V))
#define univ(V) (V).erase(unique(allv(V)),(V).end())
#define clv(V) (V).clear()
#define upmin(a,b) (a)=min((a),(b))
#define upmax(a,b) (a)=max((a),(b))
#define rb(x) ((x)&(-(x)))
#define INF (0x3f3f3f3f)
#define INFLL (0x3f3f3f3f3f3f3f3fll)
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ld, ld> pdd;
const ld EPS = ld(1e-8)/2;
bool isZero(ld n) { return abs(n) < EPS; }
bool isSame(ld a, ld b) { return isZero(a-b); }
ld pw(ld n) { return n*n; }
ld size(pdd a) { return sqrt(pw(a.first) + pw(a.second)); }
int sign(ld n) { return isZero(n) ? 0 : (0 < n ? 1 : -1); }
 
struct Vec {
	Vec(ld x = 0, ld y = 0, ld z = 0) : x(x), y(y), z(z) {}
	ld x, y, z;
 
	bool operator == (const Vec& t) const {
		return isZero(x - t.x) && isZero(y - t.y) && isZero(z - t.z);
	}
	Vec operator + (const Vec& t) const { return Vec(x+t.x, y+t.y, z+t.z); }
	Vec operator - (const Vec& t) const { return Vec(x-t.x, y-t.y, z-t.z); }
	Vec operator * (const ld& t) const { return Vec(x*t, y*t, z*t); }
	Vec operator / (const ld& t) const { return Vec(x/t, y/t, z/t); }
	Vec operator * (const Vec& t) const { return Vec(y*t.z - z*t.y, z*t.x - x*t.z, x*t.y - y*t.x); }
	ld operator / (const Vec& t) const { return x*t.x + y*t.y + z*t.z; }
	ld len() const { return sqrt(x*x + y*y + z*z); }
	ld pwlen() const { return x*x + y*y + z*z; }
	void norm() {
		const ld L = len();
		if(!isZero(L)) *this = *this / L;
	}
};
typedef vector<Vec> Cec;
ld ccw(const Vec& a, const Vec& b, const Vec& c) { return ((b-a) * (c-a)).len(); }
// a -- b -- c : True, Otherwise : False
bool isbet(Vec a, Vec b, Vec c) {
	if(a == b || b == c) return true;
 
	ld x = (b-a).pwlen(), y = (c-b).pwlen(), z = (c-a).pwlen();
	if(!isZero(x*y*4 - pw(x+y-z))) return false;
 
	if(a.x < c.x && (b.x < a.x-EPS || c.x+EPS < b.x)) return false;
	if(a.x > c.x && (b.x < c.x-EPS || a.x+EPS < b.x)) return false;
	if(a.y < c.y && (b.y < a.y-EPS || c.y+EPS < b.y)) return false;
	if(a.y > c.y && (b.y < c.y-EPS || a.y+EPS < b.y)) return false;
	return true;
}
bool isco(Vec a, Vec b, Vec c) { return isZero(ccw(a, b, c)); }
pair<Vec, bool> intersect(Vec a, Vec b, Vec c, Vec d) {
	Vec u = b-a, v = d-c, z = c-a, vz = v*z, vu = v*u;
	if(isZero(vu.len())) return {Vec(), false};
	return {a + u * (vz.len() / vu.len() * sign(vz / vu)), true};
}
Vec project(Vec a, Vec b, Vec c) { b.norm(); return b * ((c-a) / b) + a; }
 
const int MAXN = 205;
 
double D[MAXN*2][MAXN*2];
 
Vec A[MAXN], B[MAXN];
int SPI[MAXN];
 
const int CPV[28][5] = {
	{1, 0}, {1, 1}, {1, 2}, {1, 3},
	{2, 0, 1}, {2, 1, 2}, {2, 2, 3}, {2, 3, 0},
	{2, 1, 0}, {2, 2, 1}, {2, 3, 2}, {2, 0, 3},
	{3, 0, 1, 2}, {3, 1, 2, 3}, {3, 2, 3, 0}, {3, 3, 0, 1},
	{3, 2, 1, 0}, {3, 3, 2, 1}, {3, 0, 3, 2}, {3, 1, 0, 3},
	{4, 0, 1, 2, 3}, {4, 1, 2, 3, 0}, {4, 2, 3, 0, 1}, {4, 3, 0, 1, 2},
	{4, 3, 2, 1, 0}, {4, 2, 1, 0, 3}, {4, 1, 0, 3, 2}, {4, 0, 3, 2, 1}
};
Vec BP[4], CP[4];
Vec lv;
 
double Ans;
int N, C;
 
bool isp(Vec a, Vec b) {
	if(a == b) return true;
	Vec ret; bool chk;
	for(int i = 0; i < 4; i++) {
		tie(ret, chk) = intersect(a, b, BP[i], BP[(i+1)%4]);
		if(chk && isbet(BP[i], ret, BP[(i+1)%4]) && isbet(a, ret, b))
			return false;
	}
	return true;
}
bool ispl(Vec a, Vec b) {
	if(a == b) return false;
	Vec ret; bool chk;
	tie(ret, chk) = intersect(a, b, Vec(), lv);
	return chk && EPS < ret.x && EPS < ret.y && isbet(a, ret, b);
}
 
 
void upd(Cec V, ld &reta, ld &retb) {
	ld ret = 0;
	bool flag = false;
 
	for(int i = 1, n = sz(V); i < n; i++) {
		if(!isp(V[i-1], V[i])) return;
		flag ^= ispl(V[i-1], V[i]);
		ret += (V[i] - V[i-1]).len();
	}
 
	if(flag) upmin(retb, ret);
	else upmin(reta, ret);
}
void upd1(Vec a, Vec b, Vec c, ld &reta, ld &retb) {
	Vec p = project(b, c-b, a);
	if(!isbet(b, p, c)) return;
	upd(Cec{a, p}, reta, retb);
}
void f(Vec ps, Vec pe, Vec qs, Vec qe, ld &reta, ld &retb, bool iss) {
	reta = retb = INFLL;
 
	if(!iss) {
		upd(Cec{ps, qs}, reta, retb);
		upd(Cec{ps, qe}, reta, retb);
		upd(Cec{pe, qs}, reta, retb);
		upd(Cec{pe, qe}, reta, retb);
 
		upd1(ps, qs, qe, reta, retb);
		upd1(pe, qs, qe, reta, retb);
		upd1(qs, ps, pe, reta, retb);
		upd1(qe, ps, pe, reta, retb);
	}
 
	for(int cpvi = 0, cpvsz; cpvi < 28; cpvi++) {
		cpvsz = CPV[cpvi][0];
		if(iss && cpvsz < 3) continue;
 
		Cec PV, QV;
		PV.eb(ps); PV.eb(pe); QV.eb(qs); QV.eb(qe);
 
		{
			Vec p = project(ps, pe-ps, CP[CPV[cpvi][1]]);
			if(isbet(ps, p, pe)) PV.eb(p);
		}
		{
			Vec p = project(qs, qe-qs, CP[CPV[cpvi][cpvsz]]);
			if(isbet(qs, p, qe)) QV.eb(p);
		}
 
		Vec ph, qh;
 
		{
			ld pl = INFLL;
			for(auto &p : PV) {
				ld t = (p - CP[CPV[cpvi][1]]).len();
				if(pl <= t) continue;
				ph = p; pl = t;
			}
		}
		{
			ld ql = INFLL;
			for(auto &p : QV) {
				ld t = (p - CP[CPV[cpvi][cpvsz]]).len();
				if(ql <= t) continue;
				qh = p; ql = t;
			}
		}
 
		Cec Path;
		Path.eb(ph);
		for(int i = 1; i <= cpvsz; i++)
			Path.eb(CP[CPV[cpvi][i]]);
		Path.eb(qh);
		upd(Path, reta, retb);
	}
}
 
int main() {
	ios_base::sync_with_stdio(0); cin.tie(0);
	srand(20010610);
	lv.x = ld(rand() % 708790 + 337) / ld(rand() % 900 + 755);
	lv.y = ld(rand() % 632048 + 469) / ld(rand() % 908 + 147);
 
	cin >> N >> C;
	for(int i = 1; i <= N; i++)
		cin >> A[i].x >> A[i].y >> B[i].x >> B[i].y;
 
	{
		ld CEPS = ld(1e-5);
		BP[0] = Vec(ld(C) - CEPS, ld(C) - CEPS);
		BP[1] = Vec(ld(C) - CEPS, ld(-C) + CEPS);
		BP[2] = Vec(ld(-C) + CEPS, ld(-C) + CEPS);
		BP[3] = Vec(ld(-C) + CEPS, ld(C) - CEPS);
 
		CP[0] = Vec(C, C);
		CP[1] = Vec(C, -C);
		CP[2] = Vec(-C, -C);
		CP[3] = Vec(-C, C);
	}
 
	{
		ld CEPS = ld(1e-4)/2;
		for(int i = N; i; i--) {
			Vec a = A[i], b = B[i];
			if(!ispl(a, b)) continue;
 
			Vec p = intersect(a, b, Vec(), lv).first;
			Vec v = p-a; v.norm(); v = v * CEPS;
 
			N++; A[N] = a; B[N] = p-v;
			A[i] = p+v; B[i] = b;
 
			SPI[i] = N;
		}
	}
 
	for(int i = 1; i <= N; i++) for(int j = i; j <= N; j++) {
		ld a, b; f(A[i], B[i], A[j], B[j], a, b, i == j);
		D[i*2][j*2] = D[i*2-1][j*2-1] = D[j*2][i*2] = D[j*2-1][i*2-1] = a;
		D[i*2-1][j*2] = D[i*2][j*2-1] = D[j*2-1][i*2] = D[j*2][i*2-1] = b;
	}
 
	for(int i = 1; i <= N; i++) {
		D[i*2][i*2] = D[i*2-1][i*2-1] = 0;
 
		int t = SPI[i];
		if(t) D[i*2][t*2-1] = D[i*2-1][t*2] = D[t*2][i*2-1] = D[t*2-1][i*2] = 0;
	}
 
	for(int k = 1; k <= N*2; k++) for(int i = 1; i <= N*2; i++) for(int j = 1; j <= N*2; j++)
		upmin(D[i][j], D[i][k] + D[k][j]);
	
	Ans = ld(C) * 8;
	for(int i = 1; i <= N; i++) upmin(Ans, D[i*2][i*2-1]);
 
	printf("%.10lf\n", Ans);
	return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 384 KB Output is correct
2 Correct 1 ms 384 KB Output is correct
3 Correct 1 ms 384 KB Output is correct
4 Correct 1 ms 384 KB Output is correct
5 Correct 1 ms 436 KB Output is correct
6 Correct 1 ms 384 KB Output is correct
7 Correct 1 ms 384 KB Output is correct
8 Correct 1 ms 384 KB Output is correct
9 Correct 1 ms 384 KB Output is correct
10 Correct 1 ms 384 KB Output is correct
11 Correct 1 ms 384 KB Output is correct
12 Correct 1 ms 384 KB Output is correct
13 Correct 1 ms 384 KB Output is correct
14 Correct 1 ms 384 KB Output is correct
15 Correct 1 ms 384 KB Output is correct
16 Correct 1 ms 384 KB Output is correct
17 Correct 1 ms 384 KB Output is correct
18 Correct 1 ms 384 KB Output is correct
19 Correct 1 ms 384 KB Output is correct
20 Correct 1 ms 384 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 384 KB Output is correct
2 Correct 1 ms 384 KB Output is correct
3 Correct 1 ms 384 KB Output is correct
4 Correct 1 ms 384 KB Output is correct
5 Correct 1 ms 436 KB Output is correct
6 Correct 1 ms 384 KB Output is correct
7 Correct 1 ms 384 KB Output is correct
8 Correct 1 ms 384 KB Output is correct
9 Correct 1 ms 384 KB Output is correct
10 Correct 1 ms 384 KB Output is correct
11 Correct 1 ms 384 KB Output is correct
12 Correct 1 ms 384 KB Output is correct
13 Correct 1 ms 384 KB Output is correct
14 Correct 1 ms 384 KB Output is correct
15 Correct 1 ms 384 KB Output is correct
16 Correct 1 ms 384 KB Output is correct
17 Correct 1 ms 384 KB Output is correct
18 Correct 1 ms 384 KB Output is correct
19 Correct 1 ms 384 KB Output is correct
20 Correct 1 ms 384 KB Output is correct
21 Correct 2 ms 384 KB Output is correct
22 Correct 4 ms 384 KB Output is correct
23 Correct 3 ms 384 KB Output is correct
24 Correct 3 ms 384 KB Output is correct
25 Correct 3 ms 384 KB Output is correct
26 Correct 5 ms 512 KB Output is correct
27 Correct 2 ms 384 KB Output is correct
28 Correct 3 ms 384 KB Output is correct
29 Correct 3 ms 384 KB Output is correct
30 Correct 4 ms 384 KB Output is correct
31 Correct 3 ms 384 KB Output is correct
32 Correct 3 ms 384 KB Output is correct
33 Correct 4 ms 384 KB Output is correct
34 Correct 4 ms 384 KB Output is correct
35 Correct 5 ms 384 KB Output is correct
36 Correct 5 ms 384 KB Output is correct
37 Correct 3 ms 384 KB Output is correct
38 Correct 1 ms 384 KB Output is correct
39 Correct 3 ms 384 KB Output is correct
40 Correct 1 ms 384 KB Output is correct
41 Correct 1 ms 384 KB Output is correct
42 Correct 2 ms 384 KB Output is correct
43 Correct 2 ms 384 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 384 KB Output is correct
2 Correct 1 ms 384 KB Output is correct
3 Correct 1 ms 384 KB Output is correct
4 Correct 1 ms 384 KB Output is correct
5 Correct 1 ms 436 KB Output is correct
6 Correct 1 ms 384 KB Output is correct
7 Correct 1 ms 384 KB Output is correct
8 Correct 1 ms 384 KB Output is correct
9 Correct 1 ms 384 KB Output is correct
10 Correct 1 ms 384 KB Output is correct
11 Correct 1 ms 384 KB Output is correct
12 Correct 1 ms 384 KB Output is correct
13 Correct 1 ms 384 KB Output is correct
14 Correct 1 ms 384 KB Output is correct
15 Correct 1 ms 384 KB Output is correct
16 Correct 1 ms 384 KB Output is correct
17 Correct 1 ms 384 KB Output is correct
18 Correct 1 ms 384 KB Output is correct
19 Correct 1 ms 384 KB Output is correct
20 Correct 1 ms 384 KB Output is correct
21 Correct 2 ms 384 KB Output is correct
22 Correct 4 ms 384 KB Output is correct
23 Correct 3 ms 384 KB Output is correct
24 Correct 3 ms 384 KB Output is correct
25 Correct 3 ms 384 KB Output is correct
26 Correct 5 ms 512 KB Output is correct
27 Correct 2 ms 384 KB Output is correct
28 Correct 3 ms 384 KB Output is correct
29 Correct 3 ms 384 KB Output is correct
30 Correct 4 ms 384 KB Output is correct
31 Correct 3 ms 384 KB Output is correct
32 Correct 3 ms 384 KB Output is correct
33 Correct 4 ms 384 KB Output is correct
34 Correct 4 ms 384 KB Output is correct
35 Correct 5 ms 384 KB Output is correct
36 Correct 5 ms 384 KB Output is correct
37 Correct 3 ms 384 KB Output is correct
38 Correct 1 ms 384 KB Output is correct
39 Correct 3 ms 384 KB Output is correct
40 Correct 1 ms 384 KB Output is correct
41 Correct 1 ms 384 KB Output is correct
42 Correct 2 ms 384 KB Output is correct
43 Correct 2 ms 384 KB Output is correct
44 Correct 770 ms 1140 KB Output is correct
45 Correct 653 ms 1272 KB Output is correct
46 Correct 572 ms 1152 KB Output is correct
47 Correct 496 ms 1144 KB Output is correct
48 Correct 647 ms 1024 KB Output is correct
49 Correct 664 ms 1144 KB Output is correct
50 Correct 593 ms 1096 KB Output is correct
51 Correct 534 ms 1024 KB Output is correct
52 Correct 607 ms 1236 KB Output is correct
53 Correct 571 ms 1144 KB Output is correct
54 Correct 643 ms 1144 KB Output is correct
55 Correct 589 ms 1084 KB Output is correct
56 Correct 600 ms 1024 KB Output is correct
57 Correct 565 ms 1084 KB Output is correct
58 Correct 568 ms 1144 KB Output is correct
59 Correct 610 ms 1112 KB Output is correct
60 Correct 575 ms 1024 KB Output is correct
61 Correct 629 ms 1144 KB Output is correct
62 Correct 9 ms 384 KB Output is correct
63 Correct 7 ms 384 KB Output is correct
64 Correct 555 ms 1092 KB Output is correct
65 Correct 507 ms 1024 KB Output is correct
66 Correct 450 ms 1024 KB Output is correct
67 Correct 892 ms 1152 KB Output is correct
68 Correct 907 ms 1188 KB Output is correct
69 Correct 549 ms 1196 KB Output is correct
70 Correct 474 ms 1144 KB Output is correct
71 Correct 532 ms 1144 KB Output is correct
72 Correct 510 ms 1144 KB Output is correct