제출 #302039

#제출 시각아이디문제언어결과실행 시간메모리
302039user202729Palembang Bridges (APIO15_bridge)C++17
0 / 100
2 ms512 KiB
// ... #if not LOCAL #define NDEBUG 1 #endif #include<bits/stdc++.h> std::vector<int> positions; // it's more convenient to make it global. It's not changed very frequently anyway /* * stores a convex piecewise linear function. * the cuts must be in positions. */ struct Tree{ using Data=std::array<int64_t, 2>; // sort of parallel data tuple. Can be used for anything. std::vector<Data> data; // "lazy" Tree(std::size_t number): data(number*2){} static void add1(Data& first, Data sec){ first[0]+=sec[0]; first[1]+=sec[1]; } int offset() const{return int(data.size()/2);} // get raw {a, b} value at a particular position. Data rawGet(int index)const{ index+=offset(); Data result{}; for(; index; index>>=1) add1(result, data[index]); return result; } // add a value to a range. void add(int left, int right, Data const value){ left+=offset(); right+=offset(); assert(left<=right); while(left<right){ if(left&1) add1(data[left++], value); if(right&1) add1(data[--right], value); left>>=1; right>>=1; } } // self explanatory. int64_t getAtIndex(int index)const{ auto const [a, b]=(*this).rawGet(index); return (int64_t)a*positions[index]+b; } // get the function value, at a particular (possibly not in positions) position. int64_t getAtValue(int value)const{ // interpolate if necessary. (always work in this particular problem...) // could be a little simpler (by explicitly store the slope on each segment), but... // :( auto const iterator=std::lower_bound(begin(positions), end(positions), value); int64_t const value2=getAtIndex(int(iterator-positions.begin())); if(*iterator==value) return value2; int64_t const value1=getAtIndex(int(iterator-positions.begin())-1); auto const number=value1*(*iterator-value)+value2*(value-iterator[-1]); auto const de=*iterator-iterator[-1]; assert(number%de==0); return number/de; } // get any index for which getAtIndex returns the minimum value. int minIndex() const{ // assumes some specific kind of function shape. // currently O(log^2 n) // could be O(log n) instead. // :( // the boundary binary search might be reducible to O(log n) // too with some careful planning. I don't know. auto const value=[&](int pos){ assert(0<=pos and pos<offset()); return (*this).rawGet(pos)[0]; }; int pos=offset(); for(int step=1<<30; step>>=1;){ if(pos-step>=0 and value(pos-step)>=0) pos-=step; } // now pos=first element with value >=0 std::pair<int64_t, int> result{INT64_MAX, INT_MAX}; for(int pos1=pos-1; pos1<=pos; ++pos1){ // perhaps this can be simpler? I don't know... if((unsigned) pos1<(unsigned)offset()) result=std::min(result, std::make_pair(getAtIndex(pos1), pos1)); } assert(([&]{ // (slow) ensure that the found index is really the minimum. for(int pos1=0; pos1<offset(); ++pos1){ assert(getAtIndex(pos1)>=result.first); } return true; }())); return result.second; } }; int main(){ std::ios::sync_with_stdio(0);std::cin.tie(0); int k, number; std::cin>>k>>number; if(k==1) return 1; int64_t result{}; std::vector<std::array<int, 2>> queries; // read into queries, and prepare result (nonoptimizable part). // this part should not be wrong. for(int _=0; _<number; ++_){ char a, b; int first, sec; std::cin>>a>>first>>b>>sec; if(first>sec) std::swap(first, sec); result+=sec-first; // minimum required if(a!=b){ result+=1; // need to cross a bridge anyway queries.push_back({first, sec}); positions.push_back(first); positions.push_back(sec); } } number=-1; if(queries.empty()){ std::cout<<result<<'\n'; return 0; } // sort positions. std::sort(begin(positions), end(positions)); positions.erase(std::unique(begin(positions), end(positions)), end(positions)); // from now on, positions are not changed anymore. auto minAdd=INT64_MAX; // minimum of the function (it's hard to explain.) std::sort(begin(queries), end(queries), [&](auto const& first, auto const& sec){ return first[0]+first[1]<sec[0]+sec[1]; }); Tree ffirst(positions.size()), fsec(positions.size()); // in this problem value (a, b) means y=a*x+b /* first and sec are values in positions. Add the function multiplier*max(first-x, 0, x-sec) to tree. (it's convex if multiplier>=0.) */ auto const addSlope=[&](Tree& tree, int first, int sec, int multiplier){ auto const ifirst=int(std::lower_bound(begin(positions), end(positions), first)-begin(positions)); auto const isec=int(std::lower_bound(begin(positions), end(positions), sec)-begin(positions)); assert(positions[ifirst]==first); assert(positions[isec]==sec); assert(first<=sec); assert(tree.offset()==(int)positions.size()); tree.add(0, ifirst, {-1*multiplier, first*multiplier}); tree.add(isec, tree.offset(), {1*multiplier, -sec*multiplier}); // * Data could be std::pair<int, int64_t> * save implementation time! }; for(auto [first, sec]: queries) addSlope(fsec, first, sec, 1); for(int slice=0, lastSum=0; slice<=(int)queries.size(); ++slice){ int curSum=slice==(int)queries.size() ? INT_MAX: queries[slice][0]+queries[slice][1]; if(curSum>lastSum){ // find minAdd in the current slice (first<=sec, lastSum<=first+sec<=curSum) auto const ifirst=ffirst.minIndex(); auto const isec=fsec.minIndex(); auto const sum1=positions[ifirst]+positions[isec]; auto const searchFunction=[&](auto function, int left, int right){ // minAdd=min(minAdd, function(i)) for i in left..=right // given that function is ternary (or something like that) on the segment // // complexity: log(value) calls to function. (which is actually pretty terrible?) if(left>right) return; // just to be sure int pos=left; auto value=function(pos); auto const process=[&](int pos1){ auto const value1=function(pos1); if(value1<value){ pos=pos1; value=value1; } }; for(int step=1<<30; step; step>>=1){ if((int64_t)pos-step>=left) process(pos-step); if((int64_t)pos+step<=right) process(pos+step); } minAdd=std::min(minAdd, value); assert(value==function(pos)); assert(left<=pos); assert(pos<=right); assert(right-left<=500); // * only while debugging for(int i=left; i<=right; ++i) assert(function(i)>=value); }; auto const searchSlope=[&](int sum){ assert(sum>=0); assert(lastSum<=sum); assert(sum<=curSum); // diff -> (sum-diff)/2, (sum+diff)/2 // diff=sum&1+2*x // => ((sum-sum&1-2x)/2, (sum+sum&1+2x)/2) // => ( (sum>>1)-x, ((sum+1)>>1)+x ) // obviously first<=sec // need positions[0]<=first, sec<=positions.back() // (to clarify: it's not "necessary", the result remains correct without that, // but the current implementation of Tree::getAtValue can only handle those values) searchFunction([&](int x){ auto const first=(sum>>1)-x, sec=((sum+1)>>1)+x; assert(first<=sec); assert(first+sec==sum); return ffirst.getAtValue(first)+fsec.getAtValue(sec); }, 0, std::min(positions.back()-((sum+1)>>1), (sum>>1)-positions[0])); }; auto const searchC=[&]{ searchFunction([&](int value){ assert(lastSum<=value+value); assert(value+value<=curSum); return ffirst.getAtValue(value)+fsec.getAtValue(value); }, std::max(positions[0], (lastSum+1)>>1), std::min(positions.back(), curSum>>1)); }; searchSlope(lastSum); if(curSum!=INT_MAX) searchSlope(curSum); searchC(); if(lastSum<=sum1 and sum1<=curSum and ifirst<=isec) minAdd=std::min(minAdd, ffirst.getAtIndex(ifirst)+fsec.getAtIndex(isec)); lastSum=curSum; }else assert(curSum==lastSum); if(slice!=(int)queries.size()){ // apply change from queries[slice] auto const [first, sec]=queries[slice]; addSlope(fsec, first, sec, -1); addSlope(ffirst, first, sec, 1); } } std::cout<<result+minAdd*2<<'\n'; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...