import java.io.*; import java.util.*;
public class supertrees {
static class Pair implements Comparable<Pair>{
int v; int l0;
public Pair(int a, int b){
this.v=a; this.l0=b;
}
public int compareTo(Pair other){//Sort by l0 values
if(this.l0>other.l0)return 1;
if(this.l0<other.l0)return -1;
if(this.v<other.v)return -1;
if(this.v>other.v)return 1;
return 0;
}
}
/*
public static void main(String[] args) throws IOException {
// Tester code
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
int N=Integer.parseInt(br.readLine());
int[][] p=new int[N][N];
for (int i = 0; i < N; i++) {
StringTokenizer st=new StringTokenizer(br.readLine());
for (int j = 0; j < N; j++) {
p[i][j]=Integer.parseInt(st.nextToken());
}
}
System.out.println(construct(p));
}
*/
public static int construct(int[][] p){
int N=p.length;
int[][] b=new int[N][N];
int[] rank1=new int[N];//Consider the graph of 1-edges
int[] rank0=new int[N];//Graph of 1,2-edges
int[] par1=new int[N];
int[] par0=new int[N];
for (int i =0; i < N; i++) {
par1[i]=i; par0[i]=i;
}
int ii,jj;
for (int i = 0; i < N; i++) {
for (int j =0; j < N; j++) {
if(i==j)continue;
if(p[i][j]==1){
ii=find(i,par1); jj=find(j,par1);
if(ii!=jj){
if(rank1[ii]<rank1[jj]){
par1[ii]=jj;
}else if(rank1[ii]==rank1[jj]){
par1[ii]=jj; rank1[jj]++;
}else{
par1[jj]=ii;
}
}
ii=find(i,par0); jj=find(j,par0);
if(ii!=jj){
if(rank0[ii]<rank0[jj]){
par0[ii]=jj;
}else if(rank0[ii]==rank0[jj]){
par0[ii]=jj; rank0[jj]++;
}else{
par0[jj]=ii;
}
}
}else if(p[i][j]==2){
ii=find(i,par1); jj=find(j,par1);
if(ii==jj){//Deals with case i)
return 0;
}
ii=find(i,par0); jj=find(j,par0);
if(ii!=jj){
if(rank0[ii]<rank0[jj]){
par0[ii]=jj;
}else if(rank0[ii]==rank0[jj]){
par0[ii]=jj; rank0[jj]++;
}else{
par0[jj]=ii;
}
}
}else if(p[i][j]==3){
return 0;
}else{
ii=find(i,par0); jj=find(j,par0);
if(ii==jj)return 0;
}
}
}
//Now for every 1-2 component, we need to find number of 1-leaders
//That is the length of cycle. I lose if its length is 2 (length 1 is just a tree)
boolean[] done=new boolean[N];
int[] ans=new int[N];
for (int i = 0; i < N; i++) {
ii=find(i,par1);
if(!done[ii]){
jj=find(ii,par0);
ans[jj]++;
done[ii]=true;
}
}
//System.out.println(Arrays.toString(ans));
for (int i = 0; i < N; i++) {
if(ans[i]==2){
return 0;
}
}
TreeSet<Pair> leads=new TreeSet<>();//Include leaders of all 1-components
int[] cnt=new int[N];
for (int i = 0; i < N; i++) {//1-graphs
ii=find(i,par1);
if(ii!=i){
b[i][ii]=1; b[ii][i]=1;
//Same component guys don't matter
}
//I want to insert every root of each par1 component exactly once
if(cnt[find(ii,par0)]<ans[find(ii,par0)]-1 && ii!=find(ii,par0)){
leads.add(new Pair(ii,find(ii,par0)));
cnt[find(ii,par0)]++;
}
}
int prevl=-1;int prevv=0;
//Completes the cycle
int save=0;
for (Pair q: leads) {
//System.out.println(q.v+" "+q.l0+" "+prevv);
if(prevl!=q.l0){
if(prevl!=-1){
//System.out.println(prevv);
b[prevv][prevl]=1;b[prevl][prevv]=1;
}
b[q.v][q.l0]=1; b[q.l0][q.v]=1;
prevl=q.l0;
}else{
b[q.v][prevv]=1; b[prevv][q.v]=1;
}
prevv=q.v; save=q.l0;
}
if(prevv!=save){b[prevv][save]=1; b[save][prevv]=1;}
//Last fill
//The leaders of every component forms a cycle as long as they're connected in the >=1 graph
grader.build(b);
/*
for (int i = 0; i < N; i++) {
System.out.println(Arrays.toString(b[i]));
}
*/
return 1;
}
public static int find(int x, int[] par){
if(par[x]==x)return x;
int ans=find(par[x],par);
par[x]=ans; return ans;
}
}
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
82 ms |
10472 KB |
Output is correct |
2 |
Correct |
77 ms |
10360 KB |
Output is correct |
3 |
Correct |
82 ms |
10480 KB |
Output is correct |
4 |
Correct |
89 ms |
10444 KB |
Output is correct |
5 |
Correct |
81 ms |
10232 KB |
Output is correct |
6 |
Correct |
161 ms |
15752 KB |
Output is correct |
7 |
Correct |
462 ms |
57112 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
82 ms |
10472 KB |
Output is correct |
2 |
Correct |
77 ms |
10360 KB |
Output is correct |
3 |
Correct |
82 ms |
10480 KB |
Output is correct |
4 |
Correct |
89 ms |
10444 KB |
Output is correct |
5 |
Correct |
81 ms |
10232 KB |
Output is correct |
6 |
Correct |
161 ms |
15752 KB |
Output is correct |
7 |
Correct |
462 ms |
57112 KB |
Output is correct |
8 |
Correct |
82 ms |
10032 KB |
Output is correct |
9 |
Correct |
78 ms |
10360 KB |
Output is correct |
10 |
Correct |
80 ms |
10228 KB |
Output is correct |
11 |
Correct |
84 ms |
10364 KB |
Output is correct |
12 |
Correct |
186 ms |
14804 KB |
Output is correct |
13 |
Correct |
438 ms |
56984 KB |
Output is correct |
14 |
Correct |
77 ms |
10228 KB |
Output is correct |
15 |
Correct |
77 ms |
10104 KB |
Output is correct |
16 |
Correct |
93 ms |
11128 KB |
Output is correct |
17 |
Correct |
139 ms |
19424 KB |
Output is correct |
18 |
Correct |
80 ms |
10380 KB |
Output is correct |
19 |
Correct |
80 ms |
10140 KB |
Output is correct |
20 |
Correct |
373 ms |
29920 KB |
Output is correct |
21 |
Correct |
489 ms |
57136 KB |
Output is correct |
22 |
Correct |
468 ms |
57328 KB |
Output is correct |
23 |
Correct |
477 ms |
56716 KB |
Output is correct |
24 |
Correct |
442 ms |
56972 KB |
Output is correct |
25 |
Correct |
190 ms |
20332 KB |
Output is correct |
26 |
Correct |
191 ms |
20544 KB |
Output is correct |
27 |
Correct |
486 ms |
57644 KB |
Output is correct |
28 |
Correct |
484 ms |
57708 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
79 ms |
10360 KB |
Output is correct |
2 |
Correct |
80 ms |
10344 KB |
Output is correct |
3 |
Correct |
80 ms |
10236 KB |
Output is correct |
4 |
Correct |
80 ms |
10104 KB |
Output is correct |
5 |
Correct |
101 ms |
10340 KB |
Output is correct |
6 |
Correct |
80 ms |
10360 KB |
Output is correct |
7 |
Correct |
81 ms |
10468 KB |
Output is correct |
8 |
Correct |
184 ms |
14512 KB |
Output is correct |
9 |
Correct |
473 ms |
56596 KB |
Output is correct |
10 |
Correct |
82 ms |
10508 KB |
Output is correct |
11 |
Correct |
80 ms |
10384 KB |
Output is correct |
12 |
Correct |
168 ms |
14612 KB |
Output is correct |
13 |
Correct |
470 ms |
57144 KB |
Output is correct |
14 |
Correct |
78 ms |
10356 KB |
Output is correct |
15 |
Correct |
78 ms |
10356 KB |
Output is correct |
16 |
Correct |
114 ms |
11068 KB |
Output is correct |
17 |
Correct |
133 ms |
19248 KB |
Output is correct |
18 |
Correct |
79 ms |
10360 KB |
Output is correct |
19 |
Correct |
82 ms |
10236 KB |
Output is correct |
20 |
Correct |
84 ms |
10380 KB |
Output is correct |
21 |
Correct |
348 ms |
29324 KB |
Output is correct |
22 |
Correct |
471 ms |
57120 KB |
Output is correct |
23 |
Correct |
492 ms |
57484 KB |
Output is correct |
24 |
Correct |
481 ms |
57276 KB |
Output is correct |
25 |
Correct |
192 ms |
20460 KB |
Output is correct |
26 |
Correct |
154 ms |
19092 KB |
Output is correct |
27 |
Correct |
493 ms |
56720 KB |
Output is correct |
28 |
Correct |
479 ms |
56484 KB |
Output is correct |
29 |
Correct |
202 ms |
20152 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
80 ms |
10472 KB |
Output is correct |
2 |
Correct |
78 ms |
10252 KB |
Output is correct |
3 |
Correct |
83 ms |
10232 KB |
Output is correct |
4 |
Correct |
319 ms |
27232 KB |
Output is correct |
5 |
Correct |
477 ms |
57124 KB |
Output is correct |
6 |
Correct |
462 ms |
57088 KB |
Output is correct |
7 |
Correct |
517 ms |
58092 KB |
Output is correct |
8 |
Correct |
82 ms |
10472 KB |
Output is correct |
9 |
Correct |
338 ms |
26640 KB |
Output is correct |
10 |
Correct |
470 ms |
56620 KB |
Output is correct |
11 |
Correct |
525 ms |
57872 KB |
Output is correct |
12 |
Correct |
479 ms |
57512 KB |
Output is correct |
13 |
Correct |
82 ms |
10340 KB |
Output is correct |
14 |
Correct |
100 ms |
10528 KB |
Output is correct |
15 |
Incorrect |
87 ms |
10360 KB |
Too few ways to get from 0 to 1, should be 2 found 1 |
16 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
82 ms |
10472 KB |
Output is correct |
2 |
Correct |
77 ms |
10360 KB |
Output is correct |
3 |
Correct |
82 ms |
10480 KB |
Output is correct |
4 |
Correct |
89 ms |
10444 KB |
Output is correct |
5 |
Correct |
81 ms |
10232 KB |
Output is correct |
6 |
Correct |
161 ms |
15752 KB |
Output is correct |
7 |
Correct |
462 ms |
57112 KB |
Output is correct |
8 |
Correct |
82 ms |
10032 KB |
Output is correct |
9 |
Correct |
78 ms |
10360 KB |
Output is correct |
10 |
Correct |
80 ms |
10228 KB |
Output is correct |
11 |
Correct |
84 ms |
10364 KB |
Output is correct |
12 |
Correct |
186 ms |
14804 KB |
Output is correct |
13 |
Correct |
438 ms |
56984 KB |
Output is correct |
14 |
Correct |
77 ms |
10228 KB |
Output is correct |
15 |
Correct |
77 ms |
10104 KB |
Output is correct |
16 |
Correct |
93 ms |
11128 KB |
Output is correct |
17 |
Correct |
139 ms |
19424 KB |
Output is correct |
18 |
Correct |
80 ms |
10380 KB |
Output is correct |
19 |
Correct |
80 ms |
10140 KB |
Output is correct |
20 |
Correct |
373 ms |
29920 KB |
Output is correct |
21 |
Correct |
489 ms |
57136 KB |
Output is correct |
22 |
Correct |
468 ms |
57328 KB |
Output is correct |
23 |
Correct |
477 ms |
56716 KB |
Output is correct |
24 |
Correct |
442 ms |
56972 KB |
Output is correct |
25 |
Correct |
190 ms |
20332 KB |
Output is correct |
26 |
Correct |
191 ms |
20544 KB |
Output is correct |
27 |
Correct |
486 ms |
57644 KB |
Output is correct |
28 |
Correct |
484 ms |
57708 KB |
Output is correct |
29 |
Correct |
79 ms |
10360 KB |
Output is correct |
30 |
Correct |
80 ms |
10344 KB |
Output is correct |
31 |
Correct |
80 ms |
10236 KB |
Output is correct |
32 |
Correct |
80 ms |
10104 KB |
Output is correct |
33 |
Correct |
101 ms |
10340 KB |
Output is correct |
34 |
Correct |
80 ms |
10360 KB |
Output is correct |
35 |
Correct |
81 ms |
10468 KB |
Output is correct |
36 |
Correct |
184 ms |
14512 KB |
Output is correct |
37 |
Correct |
473 ms |
56596 KB |
Output is correct |
38 |
Correct |
82 ms |
10508 KB |
Output is correct |
39 |
Correct |
80 ms |
10384 KB |
Output is correct |
40 |
Correct |
168 ms |
14612 KB |
Output is correct |
41 |
Correct |
470 ms |
57144 KB |
Output is correct |
42 |
Correct |
78 ms |
10356 KB |
Output is correct |
43 |
Correct |
78 ms |
10356 KB |
Output is correct |
44 |
Correct |
114 ms |
11068 KB |
Output is correct |
45 |
Correct |
133 ms |
19248 KB |
Output is correct |
46 |
Correct |
79 ms |
10360 KB |
Output is correct |
47 |
Correct |
82 ms |
10236 KB |
Output is correct |
48 |
Correct |
84 ms |
10380 KB |
Output is correct |
49 |
Correct |
348 ms |
29324 KB |
Output is correct |
50 |
Correct |
471 ms |
57120 KB |
Output is correct |
51 |
Correct |
492 ms |
57484 KB |
Output is correct |
52 |
Correct |
481 ms |
57276 KB |
Output is correct |
53 |
Correct |
192 ms |
20460 KB |
Output is correct |
54 |
Correct |
154 ms |
19092 KB |
Output is correct |
55 |
Correct |
493 ms |
56720 KB |
Output is correct |
56 |
Correct |
479 ms |
56484 KB |
Output is correct |
57 |
Correct |
202 ms |
20152 KB |
Output is correct |
58 |
Correct |
78 ms |
10600 KB |
Output is correct |
59 |
Correct |
79 ms |
10256 KB |
Output is correct |
60 |
Correct |
89 ms |
10872 KB |
Output is correct |
61 |
Correct |
133 ms |
18968 KB |
Output is correct |
62 |
Correct |
82 ms |
10492 KB |
Output is correct |
63 |
Correct |
81 ms |
10344 KB |
Output is correct |
64 |
Correct |
80 ms |
10360 KB |
Output is correct |
65 |
Incorrect |
337 ms |
27628 KB |
Too many ways to get from 11 to 175, should be 1 found no less than 2 |
66 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
82 ms |
10472 KB |
Output is correct |
2 |
Correct |
77 ms |
10360 KB |
Output is correct |
3 |
Correct |
82 ms |
10480 KB |
Output is correct |
4 |
Correct |
89 ms |
10444 KB |
Output is correct |
5 |
Correct |
81 ms |
10232 KB |
Output is correct |
6 |
Correct |
161 ms |
15752 KB |
Output is correct |
7 |
Correct |
462 ms |
57112 KB |
Output is correct |
8 |
Correct |
82 ms |
10032 KB |
Output is correct |
9 |
Correct |
78 ms |
10360 KB |
Output is correct |
10 |
Correct |
80 ms |
10228 KB |
Output is correct |
11 |
Correct |
84 ms |
10364 KB |
Output is correct |
12 |
Correct |
186 ms |
14804 KB |
Output is correct |
13 |
Correct |
438 ms |
56984 KB |
Output is correct |
14 |
Correct |
77 ms |
10228 KB |
Output is correct |
15 |
Correct |
77 ms |
10104 KB |
Output is correct |
16 |
Correct |
93 ms |
11128 KB |
Output is correct |
17 |
Correct |
139 ms |
19424 KB |
Output is correct |
18 |
Correct |
80 ms |
10380 KB |
Output is correct |
19 |
Correct |
80 ms |
10140 KB |
Output is correct |
20 |
Correct |
373 ms |
29920 KB |
Output is correct |
21 |
Correct |
489 ms |
57136 KB |
Output is correct |
22 |
Correct |
468 ms |
57328 KB |
Output is correct |
23 |
Correct |
477 ms |
56716 KB |
Output is correct |
24 |
Correct |
442 ms |
56972 KB |
Output is correct |
25 |
Correct |
190 ms |
20332 KB |
Output is correct |
26 |
Correct |
191 ms |
20544 KB |
Output is correct |
27 |
Correct |
486 ms |
57644 KB |
Output is correct |
28 |
Correct |
484 ms |
57708 KB |
Output is correct |
29 |
Correct |
79 ms |
10360 KB |
Output is correct |
30 |
Correct |
80 ms |
10344 KB |
Output is correct |
31 |
Correct |
80 ms |
10236 KB |
Output is correct |
32 |
Correct |
80 ms |
10104 KB |
Output is correct |
33 |
Correct |
101 ms |
10340 KB |
Output is correct |
34 |
Correct |
80 ms |
10360 KB |
Output is correct |
35 |
Correct |
81 ms |
10468 KB |
Output is correct |
36 |
Correct |
184 ms |
14512 KB |
Output is correct |
37 |
Correct |
473 ms |
56596 KB |
Output is correct |
38 |
Correct |
82 ms |
10508 KB |
Output is correct |
39 |
Correct |
80 ms |
10384 KB |
Output is correct |
40 |
Correct |
168 ms |
14612 KB |
Output is correct |
41 |
Correct |
470 ms |
57144 KB |
Output is correct |
42 |
Correct |
78 ms |
10356 KB |
Output is correct |
43 |
Correct |
78 ms |
10356 KB |
Output is correct |
44 |
Correct |
114 ms |
11068 KB |
Output is correct |
45 |
Correct |
133 ms |
19248 KB |
Output is correct |
46 |
Correct |
79 ms |
10360 KB |
Output is correct |
47 |
Correct |
82 ms |
10236 KB |
Output is correct |
48 |
Correct |
84 ms |
10380 KB |
Output is correct |
49 |
Correct |
348 ms |
29324 KB |
Output is correct |
50 |
Correct |
471 ms |
57120 KB |
Output is correct |
51 |
Correct |
492 ms |
57484 KB |
Output is correct |
52 |
Correct |
481 ms |
57276 KB |
Output is correct |
53 |
Correct |
192 ms |
20460 KB |
Output is correct |
54 |
Correct |
154 ms |
19092 KB |
Output is correct |
55 |
Correct |
493 ms |
56720 KB |
Output is correct |
56 |
Correct |
479 ms |
56484 KB |
Output is correct |
57 |
Correct |
202 ms |
20152 KB |
Output is correct |
58 |
Correct |
80 ms |
10472 KB |
Output is correct |
59 |
Correct |
78 ms |
10252 KB |
Output is correct |
60 |
Correct |
83 ms |
10232 KB |
Output is correct |
61 |
Correct |
319 ms |
27232 KB |
Output is correct |
62 |
Correct |
477 ms |
57124 KB |
Output is correct |
63 |
Correct |
462 ms |
57088 KB |
Output is correct |
64 |
Correct |
517 ms |
58092 KB |
Output is correct |
65 |
Correct |
82 ms |
10472 KB |
Output is correct |
66 |
Correct |
338 ms |
26640 KB |
Output is correct |
67 |
Correct |
470 ms |
56620 KB |
Output is correct |
68 |
Correct |
525 ms |
57872 KB |
Output is correct |
69 |
Correct |
479 ms |
57512 KB |
Output is correct |
70 |
Correct |
82 ms |
10340 KB |
Output is correct |
71 |
Correct |
100 ms |
10528 KB |
Output is correct |
72 |
Incorrect |
87 ms |
10360 KB |
Too few ways to get from 0 to 1, should be 2 found 1 |
73 |
Halted |
0 ms |
0 KB |
- |