#include "split.h"
#include <bits/stdc++.h>
using namespace std;
vector< int > U;
vector< int > unionSize;
int getParents(int a){
if(U[a] == a) return a;
else return U[a] = getParents(U[a]);
}
void Union(int a, int b){
unionSize[getParents(b)] += unionSize[getParents(a)];
U[getParents(a)] = getParents(b);
}
void compute_tree(int root, int last, vector< bool > &visited, vector< vector< int > > &Graph, vector< vector< int > > &Tree, vector< pair<int, int> > &back_edges){
visited[root] = true;
for(int a : Graph[root]){
if(visited[a] && a != last){
back_edges.push_back({root, a});
continue;
}else if(visited[a]) continue;
Tree[root].push_back(a);
Tree[a].push_back(root);
compute_tree(a,root, visited, Graph, Tree, back_edges);
}
}
void compute_subtrees(int root, int last, vector< vector< int > > &Tree, vector< int > &dp){
//cout << "ROOT " << root << ' ' << last << endl;
for(int a : Tree[root]){
if(a == last){
continue;
}
else{
compute_subtrees(a, root, Tree, dp);
dp[root] += dp[a];
}
}
}
int find_centroid(int root, int last, vector< vector< int > > &Tree, vector< int > &dp, int &n){
for(int a : Tree[root]){
if(a == last) continue;
if(dp[a] > n/2){
return find_centroid(a, root, Tree,dp,n);
}
}
return root;
}
void compute_centroid_graph(int root, vector< vector< int > > &Tree, vector< vector< int > > ¢roidGraph,vector< bool > &visitedCentroid, const int ¢roid, vector< pair<int, int> > ¢roidEdges){
visitedCentroid[root] = true;
for(int a : Tree[root]){
if(visitedCentroid[a]) continue;
if(a == centroid){
centroidEdges.push_back({a,root});
continue;
}
//cout << "ROOT " << root << " " << a << endl;
centroidGraph[a].push_back(root);
centroidGraph[root].push_back(a);
compute_centroid_graph(a, Tree, centroidGraph, visitedCentroid, centroid, centroidEdges);
}
}
int computeSizeSubtree(int root, vector< vector< int > > ¢roidGraph, vector< bool > &visitedSubset, const int bigRoot){
int tot = 1;
visitedSubset[root] = true;
Union(root, bigRoot);
//cout << "SUBTREE " << root << endl;
//cout << centroidGraph[root].size() << endl;
for(int a : centroidGraph[root]){
if(visitedSubset[a]) continue;
//cout << root << ' ' << a << endl;
tot += computeSizeSubtree(a, centroidGraph, visitedSubset, bigRoot);
}
return tot;
}
void colourGraph(int root, vector< vector< int > > ¢roidGraph, vector< bool > &visitedColouring, vector< int > &ans, const int colour, int &total){
if(total == 0) return;
visitedColouring[root] = true;
ans[root] = colour;
total--;
//cout << "COLOURING " << root << " in " << colour << endl;
if(total == 0) return;
for(int a : centroidGraph[root]){
if(visitedColouring[a]) continue;
colourGraph(a, centroidGraph, visitedColouring, ans, colour, total);
}
}
vector<int> find_split(int n, int a, int b, int c, vector<int> p, vector<int> q) {
vector< pair<int, int> > sorting = {{a,1},{b,2},{c,3}};
sort(sorting.begin(), sorting.end());
a = sorting[0].first;
b = sorting[1].first;
c = sorting[2].first;
vector< vector< int > > Graph(n);
vector< bool > visited(n,false);
for(int i = 0; i < (int)p.size(); i++){
Graph[p[i]].push_back(q[i]);
Graph[q[i]].push_back(p[i]);
}
//TRANSFORM THE GRAPH TO A TREE
vector< vector< int > > Tree(n);
vector< pair<int, int> > back_edges;
//cout << "OK" << endl;
compute_tree(1,-1, visited, Graph, Tree, back_edges);
//cout << "OK" << endl;
//for(auto e: back_edges) cout << e.first << ' ' << e.second << endl;
//COMPUTE SIZE OF SUBTREES
vector< int > dp(n, 1);
compute_subtrees(1,-1,Tree,dp);
//FIND THE CENTROID
int centroid = find_centroid(1,-1, Tree, dp,n);
//cout << "CENTROID " << centroid << endl;
//COMPUTE CENTROID GRAPH
vector< vector< int > > centroidGraph(n);
vector< bool > visitedCentroid(n,false);
vector< pair<int, int> > centroidEdges;
for(int i = 0; i < n; i++){
if(!visitedCentroid[i] && i != centroid){
compute_centroid_graph(i,Tree, centroidGraph,visitedCentroid, centroid, centroidEdges);
}
}
//COMPUTE SIZE AND ROOT OF EACH SUBSET
U.resize(n);
unionSize.resize(n,1);
for(int i = 0; i < n; i++) U[i] = i;
vector< pair<int, int> > sizeAndRootOfSubset;
vector< bool > visitedSubset(n, false);
for(int i = 0; i < n; i++){
if(!visitedSubset[i]){
int size = computeSizeSubtree(i, centroidGraph, visitedSubset, i);
sizeAndRootOfSubset.push_back({size,i});
//cout << "SIZE " << size << ' ' << "ROOT " << i << endl;
}
}
//cout << "OK" << endl;
//CHECK IF ONE OF THEM IS SMALLER THAN A
sort(sizeAndRootOfSubset.begin(), sizeAndRootOfSubset.end());
if(sizeAndRootOfSubset.back().first >= a){
vector< int > ans(n,-1);
vector< bool > visitedColouring(n,false);
colourGraph(sizeAndRootOfSubset.back().second, centroidGraph, visitedColouring, ans, sorting[0].second, a);
//ADD EDGES TO CENTROID
for(auto e : centroidEdges){
centroidGraph[e.first].push_back(e.second);
centroidGraph[e.second].push_back(e.first);
}
int left = b;
//cout << left << endl;
colourGraph(centroid, centroidGraph, visitedColouring, ans, sorting[1].second, left);
//REPLACE ALL -1 by 3
for(int &A : ans){
if(A == -1) A=sorting[2].second;
}
return ans;
}
for(auto e : back_edges){
centroidGraph[e.first].push_back(e.second);
centroidGraph[e.second].push_back(e.first);
if(getParents(e.first) == getParents(e.second)){
continue;
}
else{
Union(e.first, e.second);
if(unionSize[getParents(e.first)] >= a){
vector< int > ans(n,-1);
vector< bool > visitedColouring(n,false);
colourGraph(getParents(e.first), centroidGraph, visitedColouring, ans, sorting[0].second, a);
for(auto E : centroidEdges){
centroidGraph[E.first].push_back(E.second);
centroidGraph[E.second].push_back(E.first);
}
colourGraph(centroid, centroidGraph, visitedColouring, ans, sorting[1].second, b);
//REPLACE ALL -1 by 3
for(int &A : ans){
if(A == -1) A=sorting[2].second;
}
return ans;
}
}
}
vector< int > ans(n);
return ans;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
256 KB |
ok, correct split |
2 |
Incorrect |
1 ms |
256 KB |
invalid split: #1=0, #2=1, #3=2 |
3 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
256 KB |
ok, correct split |
2 |
Correct |
0 ms |
256 KB |
ok, correct split |
3 |
Correct |
1 ms |
256 KB |
ok, correct split |
4 |
Correct |
206 ms |
27640 KB |
ok, correct split |
5 |
Correct |
158 ms |
21112 KB |
ok, correct split |
6 |
Correct |
198 ms |
31736 KB |
ok, correct split |
7 |
Correct |
203 ms |
28152 KB |
ok, correct split |
8 |
Correct |
221 ms |
24300 KB |
ok, correct split |
9 |
Correct |
169 ms |
20984 KB |
ok, correct split |
10 |
Correct |
106 ms |
23532 KB |
ok, correct split |
11 |
Correct |
113 ms |
23404 KB |
ok, correct split |
12 |
Incorrect |
112 ms |
23532 KB |
invalid split: #1=0, #2=50001, #3=49999 |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
256 KB |
ok, correct split |
2 |
Correct |
161 ms |
21112 KB |
ok, correct split |
3 |
Correct |
48 ms |
8824 KB |
ok, correct split |
4 |
Correct |
1 ms |
256 KB |
ok, correct split |
5 |
Correct |
183 ms |
24312 KB |
ok, correct split |
6 |
Correct |
183 ms |
24696 KB |
ok, correct split |
7 |
Correct |
183 ms |
24824 KB |
ok, correct split |
8 |
Correct |
196 ms |
23948 KB |
ok, correct split |
9 |
Correct |
186 ms |
24184 KB |
ok, correct split |
10 |
Correct |
40 ms |
7424 KB |
ok, no valid answer |
11 |
Correct |
63 ms |
10872 KB |
ok, no valid answer |
12 |
Correct |
131 ms |
20600 KB |
ok, no valid answer |
13 |
Correct |
152 ms |
21112 KB |
ok, no valid answer |
14 |
Correct |
103 ms |
20332 KB |
ok, no valid answer |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
256 KB |
ok, correct split |
2 |
Correct |
0 ms |
256 KB |
ok, no valid answer |
3 |
Correct |
1 ms |
256 KB |
ok, correct split |
4 |
Correct |
1 ms |
384 KB |
ok, correct split |
5 |
Correct |
1 ms |
256 KB |
ok, correct split |
6 |
Correct |
1 ms |
256 KB |
ok, correct split |
7 |
Correct |
1 ms |
256 KB |
ok, correct split |
8 |
Correct |
1 ms |
256 KB |
ok, correct split |
9 |
Correct |
4 ms |
1024 KB |
ok, correct split |
10 |
Correct |
4 ms |
896 KB |
ok, correct split |
11 |
Correct |
1 ms |
384 KB |
ok, correct split |
12 |
Correct |
4 ms |
896 KB |
ok, correct split |
13 |
Correct |
1 ms |
256 KB |
ok, correct split |
14 |
Correct |
1 ms |
256 KB |
ok, correct split |
15 |
Correct |
1 ms |
384 KB |
ok, correct split |
16 |
Correct |
1 ms |
384 KB |
ok, correct split |
17 |
Correct |
1 ms |
256 KB |
ok, correct split |
18 |
Correct |
1 ms |
256 KB |
ok, correct split |
19 |
Correct |
1 ms |
384 KB |
ok, correct split |
20 |
Correct |
2 ms |
640 KB |
ok, correct split |
21 |
Correct |
3 ms |
896 KB |
ok, correct split |
22 |
Correct |
3 ms |
896 KB |
ok, correct split |
23 |
Correct |
3 ms |
896 KB |
ok, correct split |
24 |
Correct |
3 ms |
896 KB |
ok, correct split |
25 |
Correct |
4 ms |
896 KB |
ok, correct split |
26 |
Incorrect |
3 ms |
1024 KB |
invalid split: #1=401, #2=800, #3=1199 |
27 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
256 KB |
ok, correct split |
2 |
Incorrect |
1 ms |
256 KB |
invalid split: #1=0, #2=1, #3=2 |
3 |
Halted |
0 ms |
0 KB |
- |