답안 #294680

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
294680 2020-09-09T08:23:30 Z rama_pang Collapse (JOI18_collapse) C++14
100 / 100
5966 ms 20472 KB
#include "collapse.h"
#include <bits/stdc++.h>
using namespace std;

class disjoint_set {
 public:
  disjoint_set() {}
  disjoint_set(int n) : n_(n), comp_count(n), comp(n, -1) {}

  int find_root(int x) {
    return (comp[x] < 0) ? x : find_root(comp[x]);
  }

  int merge(int x, int y) {
    x = find_root(x);
    y = find_root(y);
    if (x == y) {
      return 0;
    }
    if (-comp[x] > -comp[y]) {
      swap(x, y);
    }
    history.push_back({x, comp[x]});
    history.push_back({y, comp[y]});
    comp[y] += comp[x];
    comp[x] = y;
    comp_count--;
    return 1;
  }

  void rollback(int x) {
    comp_count += x;
    for (int i = 0; i < 2 * x; i++) {
      comp[history.back().first] = history.back().second;
      history.pop_back();
    }
  }

  void make_set() {
    n_ += 1;
    comp.emplace_back(-1);
  }

  int size(int x) {
    return -comp[find_root(x)];
  }

  int size() {
    return comp_count;
  }

 private:
  int n_;
  int comp_count;
  vector<int> comp;
  vector<pair<int, int>> history;
};

vector<int> simulateCollapse(int N, vector<int> T, 
                                    vector<int> X, 
                                    vector<int> Y, 
                                    vector<int> W, 
                                    vector<int> P) {
  int C = (int) T.size();
  int Q = (int) W.size();
  vector<int> ans(Q);
  vector<array<int, 4>> events;
  for (int i = 0; i < C; i++) {
    if (X[i] > Y[i]) {
      swap(X[i], Y[i]);
    }
    if (T[i] == 0) {
      events.push_back({i, -1, X[i], Y[i]});
    } else {
      events.push_back({i, -2, X[i], Y[i]});
    }
  }
  for (int i = 0; i < Q; i++) {
    events.push_back({W[i], i, P[i], P[i] + 1});
  }
  for (int rep = 0; rep < 2; rep++) {
    struct edge {
      int u, v;
      edge() : u(0), v(0) {}
      edge(int u, int v) : u(u), v(v) {}
      const bool operator < (const edge &o) const {
        return make_pair(u, v) < make_pair(o.u, o.v);
      }
    };
    struct interval {
      int l, r;
      interval() : l(0), r(0) {}
      interval(int l, int r) : l(l), r(r) {}
    };

    const int BLOCK = 1000;
    const int INF = 1e8;

    set<edge> active_edges;
    sort(begin(events), end(events));
    for (int current = 0; current < (int) events.size(); current += BLOCK) {
      set<edge> changed_edges;
      for (int i = current; i < min(int(events.size()), current + BLOCK); i++) {
        if (events[i][1] < 0) {
          changed_edges.insert({events[i][2], events[i][3]});
        }
      }

      map<edge, int> active_time;
      vector<edge> edges_permanent;
      for (auto e : active_edges) {
        if (changed_edges.count(e) == 0) {
          edges_permanent.push_back(e);
        } else {
          active_time[e] = 0;
        }
      }

      vector<array<int, 3>> queries; // (x-coord, time, id)
      vector<pair<edge, interval>> edges_temp;
      for (int i = current; i < min(int(events.size()), current + BLOCK); i++) {
        if (events[i][1] == -1) {
          active_time[edge(events[i][2], events[i][3])] = events[i][0];
        } else if (events[i][1] == -2) {
          edge e = edge(events[i][2], events[i][3]);
          edges_temp.push_back(make_pair(e, interval(active_time[e], events[i][0])));
          active_time.erase(e);
        } else {
          queries.push_back({events[i][2], events[i][0], events[i][1]});
        }
      }
      for (auto e : active_time) {
        edges_temp.push_back(make_pair(e.first, interval(e.second, INF)));
      }
      sort(begin(edges_permanent), end(edges_permanent), [](const edge &e1, const edge &e2) {
        return e1.v < e2.v;
      });
      reverse(begin(edges_permanent), end(edges_permanent));
      sort(begin(queries), end(queries));

      disjoint_set dsu(N);
      for (auto q : queries) {
        while (!edges_permanent.empty() && edges_permanent.back().v <= q[0]) {
          int u = edges_permanent.back().u;
          int v = edges_permanent.back().v;
          edges_permanent.pop_back();
          dsu.merge(u, v);
        }

        int rollbacks = 0;
        for (auto e : edges_temp) {
          if (e.first.v <= q[0] && e.second.l <= q[1] && q[1] < e.second.r) {
            rollbacks += dsu.merge(e.first.u, e.first.v);
          }
        }
        ans[q[2]] += dsu.size() - (N - q[0] - 1);
        dsu.rollback(rollbacks);
      }

      for (int i = current; i < min(int(events.size()), current + BLOCK); i++) {
        if (events[i][1] == -1) {
          assert(active_edges.count({events[i][2], events[i][3]}) == 0);
          active_edges.insert({events[i][2], events[i][3]});
        } else if (events[i][1] == -2) {
          assert(active_edges.count({events[i][2], events[i][3]}) == 1);
          active_edges.erase({events[i][2], events[i][3]});
        }
      }
    }
    for (int i = 0; i < (int) events.size(); i++) {
      events[i][2] = N - events[i][2] - 1;
      events[i][3] = N - events[i][3] - 1;
      swap(events[i][2], events[i][3]);
    }
  }
  return ans;
}
# 결과 실행 시간 메모리 Grader output
1 Correct 11 ms 1024 KB Output is correct
2 Correct 7 ms 640 KB Output is correct
3 Correct 6 ms 640 KB Output is correct
4 Correct 5 ms 640 KB Output is correct
5 Correct 16 ms 1024 KB Output is correct
6 Correct 37 ms 1148 KB Output is correct
7 Correct 4 ms 640 KB Output is correct
8 Correct 4 ms 640 KB Output is correct
9 Correct 18 ms 1024 KB Output is correct
10 Correct 39 ms 1024 KB Output is correct
11 Correct 58 ms 1308 KB Output is correct
12 Correct 52 ms 1308 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 60 ms 4844 KB Output is correct
2 Correct 70 ms 4844 KB Output is correct
3 Correct 310 ms 10216 KB Output is correct
4 Correct 69 ms 4980 KB Output is correct
5 Correct 485 ms 10492 KB Output is correct
6 Correct 148 ms 5360 KB Output is correct
7 Correct 3421 ms 16404 KB Output is correct
8 Correct 514 ms 11140 KB Output is correct
9 Correct 75 ms 5236 KB Output is correct
10 Correct 82 ms 5228 KB Output is correct
11 Correct 108 ms 5484 KB Output is correct
12 Correct 543 ms 11368 KB Output is correct
13 Correct 1875 ms 13640 KB Output is correct
14 Correct 4737 ms 17788 KB Output is correct
15 Correct 3602 ms 18652 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 62 ms 4852 KB Output is correct
2 Correct 80 ms 4844 KB Output is correct
3 Correct 82 ms 4844 KB Output is correct
4 Correct 81 ms 4972 KB Output is correct
5 Correct 92 ms 5100 KB Output is correct
6 Correct 172 ms 5360 KB Output is correct
7 Correct 2313 ms 13828 KB Output is correct
8 Correct 4437 ms 16880 KB Output is correct
9 Correct 81 ms 5228 KB Output is correct
10 Correct 118 ms 5736 KB Output is correct
11 Correct 4440 ms 20156 KB Output is correct
12 Correct 5691 ms 20076 KB Output is correct
13 Correct 4679 ms 20076 KB Output is correct
14 Correct 5966 ms 20388 KB Output is correct
15 Correct 4443 ms 20052 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 11 ms 1024 KB Output is correct
2 Correct 7 ms 640 KB Output is correct
3 Correct 6 ms 640 KB Output is correct
4 Correct 5 ms 640 KB Output is correct
5 Correct 16 ms 1024 KB Output is correct
6 Correct 37 ms 1148 KB Output is correct
7 Correct 4 ms 640 KB Output is correct
8 Correct 4 ms 640 KB Output is correct
9 Correct 18 ms 1024 KB Output is correct
10 Correct 39 ms 1024 KB Output is correct
11 Correct 58 ms 1308 KB Output is correct
12 Correct 52 ms 1308 KB Output is correct
13 Correct 60 ms 4844 KB Output is correct
14 Correct 70 ms 4844 KB Output is correct
15 Correct 310 ms 10216 KB Output is correct
16 Correct 69 ms 4980 KB Output is correct
17 Correct 485 ms 10492 KB Output is correct
18 Correct 148 ms 5360 KB Output is correct
19 Correct 3421 ms 16404 KB Output is correct
20 Correct 514 ms 11140 KB Output is correct
21 Correct 75 ms 5236 KB Output is correct
22 Correct 82 ms 5228 KB Output is correct
23 Correct 108 ms 5484 KB Output is correct
24 Correct 543 ms 11368 KB Output is correct
25 Correct 1875 ms 13640 KB Output is correct
26 Correct 4737 ms 17788 KB Output is correct
27 Correct 3602 ms 18652 KB Output is correct
28 Correct 62 ms 4852 KB Output is correct
29 Correct 80 ms 4844 KB Output is correct
30 Correct 82 ms 4844 KB Output is correct
31 Correct 81 ms 4972 KB Output is correct
32 Correct 92 ms 5100 KB Output is correct
33 Correct 172 ms 5360 KB Output is correct
34 Correct 2313 ms 13828 KB Output is correct
35 Correct 4437 ms 16880 KB Output is correct
36 Correct 81 ms 5228 KB Output is correct
37 Correct 118 ms 5736 KB Output is correct
38 Correct 4440 ms 20156 KB Output is correct
39 Correct 5691 ms 20076 KB Output is correct
40 Correct 4679 ms 20076 KB Output is correct
41 Correct 5966 ms 20388 KB Output is correct
42 Correct 4443 ms 20052 KB Output is correct
43 Correct 457 ms 10728 KB Output is correct
44 Correct 3539 ms 16476 KB Output is correct
45 Correct 579 ms 11112 KB Output is correct
46 Correct 4457 ms 16712 KB Output is correct
47 Correct 85 ms 5236 KB Output is correct
48 Correct 92 ms 5236 KB Output is correct
49 Correct 122 ms 5736 KB Output is correct
50 Correct 387 ms 6636 KB Output is correct
51 Correct 685 ms 11388 KB Output is correct
52 Correct 1668 ms 13024 KB Output is correct
53 Correct 1479 ms 13024 KB Output is correct
54 Correct 2515 ms 15284 KB Output is correct
55 Correct 2124 ms 15092 KB Output is correct
56 Correct 2843 ms 16660 KB Output is correct
57 Correct 3644 ms 18144 KB Output is correct
58 Correct 4555 ms 19096 KB Output is correct
59 Correct 4335 ms 20472 KB Output is correct
60 Correct 5684 ms 19984 KB Output is correct