답안 #290101

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
290101 2020-09-03T12:08:56 Z model_code Chess Rush (CEOI20_chessrush) C++17
100 / 100
1034 ms 8312 KB
#include <iostream>
#include <algorithm>
#include <vector>

#include "arithmetics.h"

using namespace std;

int Q, R,C, start, finish;
char piece;

const int maxc=1010;
int fact[maxc];

void precalc() {
    fact[0] = 1;
    for (int i=1; i<maxc; ++i) {
        fact[i] = Mul(fact[i-1], i);
    }
}
int comb(int n, int k) {
    int ret = 1;
    for (int x=n-k+1; x<=n; ++x) {
        ret = Mul(ret, x);
    }
    return Div(ret, fact[k]);
}

pair<int,int> bounce_bishop(int s, int f, int r, int c) {
    pair<int,int> ret = { 0,0 };
    if (s!=1) {
        int wallrow = s;
        ret.first = 1+(r-wallrow)/(c-1);
        ret.second = 1;
        int remrow = (r-wallrow)%(c-1);
        bool fromleft=ret.first & 1;
        int impactfield = fromleft ? 1+remrow : c-remrow;
        if (remrow>0) ++ret.first;
        if (impactfield == f) return ret;
        if (remrow==0) ++ret.first;
        int freediag;
        if (fromleft) {
            if (f<impactfield) {
                freediag = c+1-(impactfield+f)/2-1;
                ++ret.first;
            }
            else {
                freediag = (f-impactfield)/2;
            }
        }
        else {
            if (f>impactfield) {
                freediag = (f+impactfield)/2-1;
                ++ret.first;
            }
            else {
                freediag = (impactfield-f)/2;
            }
        }
        ret.second = comb(ret.first-2+freediag,freediag);
    }
    return ret;
}

int DPup[maxc][maxc], newDP[maxc][maxc];
void onestep() {
    for (int s=0; s<C; ++s) for (int c=0; c<C; ++c) newDP[s][c]=0;
    for (int s=0; s<C; ++s) for (int c=0; c<C; ++c) {
        if (c>0) newDP[s][c-1] = Add(newDP[s][c-1], DPup[s][c]);
        newDP[s][c] = Add(newDP[s][c], DPup[s][c]);
        if (c+1<C) newDP[s][c+1] = Add(newDP[s][c+1], DPup[s][c]);
    }
    for (int s=0; s<C; ++s) for (int c=0; c<C; ++c) DPup[s][c] = newDP[s][c];
}
void doublestep() {
    for (int s=0; s<C; ++s) for (int c=0; c<C; ++c) newDP[s][c]=0;
    for (int s=0; s<C; ++s) {
        for (int mid=0; mid<C; ++mid) {
            newDP[s][0] = Add(newDP[s][0], Mul(DPup[s][mid],DPup[mid][0]));
        }
    }
    for (int e=1; e<C; ++e) newDP[0][e] = newDP[e][0], newDP[C-1][e] = newDP[C-1-e][0];
    for (int e=1; 2*e<C; ++e) {
        for (int s=1; s+1<C; ++s) {
            if (s-e>=0) newDP[s][e] = Add(newDP[s-e][0], newDP[s+1][e-1]);
            else newDP[s][e] = Add(newDP[s+e][0], newDP[s-1][e-1]);
        }
    }
    for (int e=(C-1)/2+1; e<C; ++e) {
        for (int s=1; s+1<C; ++s) {
            newDP[s][e] = newDP[C-1-s][C-1-e];
        }
    }
    for (int s=0; s<C; ++s) for (int c=0; c<C; ++c) DPup[s][c] = newDP[s][c];
}
void kingDP() {
    for (int s=0; s<C; ++s) for (int c=0; c<C; ++c) DPup[s][c] = 0;
    for (int s=0; s<C; ++s) {
        DPup[s][s]=1;
    }
    vector<bool> steplist;
    int r=R-1;
    while (r>0) {
        steplist.push_back(r&1);
        r >>= 1;
    }
    while (!steplist.empty()) {
        if (steplist.back()) onestep();
        steplist.pop_back();
        if (steplist.size()>0) doublestep();
    }
}

pair<int,int> pawnsolve() {
    if (start==finish) return {R-1,1};
    return {0,0};
}
pair<int,int> rooksolve() {
    if (start==finish) return {1,1};
    return {2,2};
}
pair<int,int> queensolve() {
    if (start==finish || finish-start == R-1) return {1,1};
    pair<int,int> ret = {2,2};
    if (start>finish-R+1) ret.second+=2;
    if (start-R+1>0) ret.second++;
    if (finish-R+1>0) ret.second++;
    if (finish+R-1<=C) ret.second++;
    if (start+R-1<=C) ret.second++;
    if ((start+1)%2 == (R+finish)%2) {
        int k = (R+finish-start-1)/2;
        int l = R-k-1;
        if (k>0 && l>0 && start-l>0) ret.second++;
        if (k>0 && l>0 && start+k<=C) ret.second++;
    }
    return ret;
}
pair<int,int> bishopsolve() {
    if ((start+1)%2 != (R+finish)%2) return {0,0};
    if (start+R-1 == finish || start-R+1==finish) return {1,1};
    int r=R,c=C;
    if (finish-start+1 > R) r=finish-start+1, c=R, start=1, finish=R;
    int k = (r+finish-start-1)/2;
    int l = r-k-1;
    int cnt = (start-l>0) + (start+k<=c);
    if (k>0 && l>0 && cnt>0) return {2,cnt};
    auto leftans = bounce_bishop(start,finish,r,c);
    auto rightans = bounce_bishop(c+1-start,c+1-finish,r,c);
    if (leftans.first==0 || (rightans.first>0 && leftans.first>rightans.first)) return rightans;
    if (rightans.first==0 || rightans.first>leftans.first) return leftans;
    return {leftans.first, Add(leftans.second,rightans.second)};
}
pair<int,int> kingsolve() {
    return {R-1, DPup[start-1][finish-1]};
}

void solve() {
    cin >> piece >> start >> finish;
    if (finish<start) start=C+1-start, finish=C+1-finish;
    pair<int,int> ans;
    if (piece=='P') ans = pawnsolve();
    if (piece=='R') ans = rooksolve();
    if (piece=='Q') ans = queensolve();
    if (piece=='B') ans = bishopsolve();
    if (piece=='K') ans = kingsolve();
    cout << ans.first << " " << ans.second << endl;
}

int main() {
    ios::sync_with_stdio(false);
    cin >> R >> C >> Q;
    precalc();
    kingDP();
    while (Q--) solve();
    return 0;
}
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 384 KB Output is correct
2 Correct 371 ms 6716 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 384 KB Output is correct
2 Correct 2 ms 512 KB Output is correct
3 Correct 1 ms 384 KB Output is correct
4 Correct 37 ms 3456 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 384 KB Output is correct
2 Correct 1 ms 384 KB Output is correct
3 Correct 1 ms 384 KB Output is correct
4 Correct 1 ms 512 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 384 KB Output is correct
2 Correct 1 ms 384 KB Output is correct
3 Correct 1 ms 384 KB Output is correct
4 Correct 1 ms 512 KB Output is correct
5 Correct 317 ms 8192 KB Output is correct
6 Correct 146 ms 4352 KB Output is correct
7 Correct 4 ms 640 KB Output is correct
8 Correct 916 ms 8300 KB Output is correct
9 Correct 3 ms 384 KB Output is correct
10 Correct 10 ms 1024 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 672 KB Output is correct
2 Correct 3 ms 1152 KB Output is correct
3 Correct 2 ms 1024 KB Output is correct
4 Correct 1 ms 384 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 672 KB Output is correct
2 Correct 3 ms 1152 KB Output is correct
3 Correct 2 ms 1024 KB Output is correct
4 Correct 1 ms 384 KB Output is correct
5 Correct 4 ms 640 KB Output is correct
6 Correct 3 ms 640 KB Output is correct
7 Correct 5 ms 1024 KB Output is correct
8 Correct 5 ms 1152 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 672 KB Output is correct
2 Correct 3 ms 1152 KB Output is correct
3 Correct 2 ms 1024 KB Output is correct
4 Correct 1 ms 384 KB Output is correct
5 Correct 4 ms 640 KB Output is correct
6 Correct 3 ms 640 KB Output is correct
7 Correct 5 ms 1024 KB Output is correct
8 Correct 5 ms 1152 KB Output is correct
9 Correct 3 ms 640 KB Output is correct
10 Correct 4 ms 640 KB Output is correct
11 Correct 14 ms 1280 KB Output is correct
12 Correct 15 ms 1152 KB Output is correct
13 Correct 4 ms 640 KB Output is correct
14 Correct 0 ms 384 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 672 KB Output is correct
2 Correct 3 ms 1152 KB Output is correct
3 Correct 2 ms 1024 KB Output is correct
4 Correct 1 ms 384 KB Output is correct
5 Correct 4 ms 640 KB Output is correct
6 Correct 3 ms 640 KB Output is correct
7 Correct 5 ms 1024 KB Output is correct
8 Correct 5 ms 1152 KB Output is correct
9 Correct 3 ms 640 KB Output is correct
10 Correct 4 ms 640 KB Output is correct
11 Correct 14 ms 1280 KB Output is correct
12 Correct 15 ms 1152 KB Output is correct
13 Correct 4 ms 640 KB Output is correct
14 Correct 0 ms 384 KB Output is correct
15 Correct 4 ms 640 KB Output is correct
16 Correct 4 ms 640 KB Output is correct
17 Correct 910 ms 8300 KB Output is correct
18 Correct 1034 ms 8312 KB Output is correct
19 Correct 776 ms 7972 KB Output is correct
20 Correct 788 ms 8312 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 384 KB Output is correct
2 Correct 371 ms 6716 KB Output is correct
3 Correct 1 ms 384 KB Output is correct
4 Correct 2 ms 512 KB Output is correct
5 Correct 1 ms 384 KB Output is correct
6 Correct 37 ms 3456 KB Output is correct
7 Correct 1 ms 384 KB Output is correct
8 Correct 1 ms 384 KB Output is correct
9 Correct 1 ms 384 KB Output is correct
10 Correct 1 ms 512 KB Output is correct
11 Correct 317 ms 8192 KB Output is correct
12 Correct 146 ms 4352 KB Output is correct
13 Correct 4 ms 640 KB Output is correct
14 Correct 916 ms 8300 KB Output is correct
15 Correct 3 ms 384 KB Output is correct
16 Correct 10 ms 1024 KB Output is correct
17 Correct 1 ms 672 KB Output is correct
18 Correct 3 ms 1152 KB Output is correct
19 Correct 2 ms 1024 KB Output is correct
20 Correct 1 ms 384 KB Output is correct
21 Correct 4 ms 640 KB Output is correct
22 Correct 3 ms 640 KB Output is correct
23 Correct 5 ms 1024 KB Output is correct
24 Correct 5 ms 1152 KB Output is correct
25 Correct 3 ms 640 KB Output is correct
26 Correct 4 ms 640 KB Output is correct
27 Correct 14 ms 1280 KB Output is correct
28 Correct 15 ms 1152 KB Output is correct
29 Correct 4 ms 640 KB Output is correct
30 Correct 0 ms 384 KB Output is correct
31 Correct 4 ms 640 KB Output is correct
32 Correct 4 ms 640 KB Output is correct
33 Correct 910 ms 8300 KB Output is correct
34 Correct 1034 ms 8312 KB Output is correct
35 Correct 776 ms 7972 KB Output is correct
36 Correct 788 ms 8312 KB Output is correct
37 Correct 874 ms 8300 KB Output is correct
38 Correct 1031 ms 8312 KB Output is correct
39 Correct 938 ms 8312 KB Output is correct
40 Correct 3 ms 384 KB Output is correct
41 Correct 810 ms 8312 KB Output is correct
42 Correct 3 ms 512 KB Output is correct