/*
Problem: https://oj.uz/problem/view/balkan11_timeismoney
Solution: http://www.boi2011.ro/resurse/tasks/timeismoney-sol.pdf
*/
#include <bits/stdc++.h>
using namespace std;
#ifdef LOCAL
#define D(a) cerr << #a << " = " << a << endl
#else
#define D(a) 8
#endif
#define fastio ios_base::sync_with_stdio(0); cin.tie(0)
#define dforsn(i,s,n) for(int i=int(n-1);i>=int(s);i--)
#define forsn(i,s,n) for(int i=int(s);i<int(n);i++)
#define all(a) (a).begin(),(a).end()
#define dforn(i,n) dforsn(i,0,n)
#define forn(i,n) forsn(i,0,n)
#define si(a) int((a).size())
#define pb emplace_back
#define mp make_pair
#define snd second
#define fst first
#define endl '\n'
using pii = pair<int,int>;
using vi = vector<int>;
using ll = long long;
struct UF {
vi par, sz;
UF(int n): par(n), sz(n, 1) { iota(all(par), 0); }
int find(int u) { return par[u] == u ? u : par[u] = find(par[u]); }
bool connected(int u, int v) { return find(u) == find(v); }
bool join(int u, int v) {
if (connected(u, v)) return false;
u = find(u), v = find(v);
if (sz[u] < sz[v]) par[u] = v, sz[v] += sz[u];
else par[v] = u, sz[u] += sz[v];
return true;
}
};
vi mst;
ll mn = 1e18;
int n, m, ba, bb, sumT, sumC;
vector<tuple<int,int,int,int>> edges;
struct Kruskal {
vector<pii> ids;
void addEdge(int cost, int id) {
ids.pb(cost, id);
}
ll build() {
sort(all(ids));
mst.clear();
UF uf(n);
sumT = 0, sumC = 0;
for (auto &[cst, id] : ids) {
auto &[u, v, t, c] = edges[id];
if (uf.join(u, v)) {
mst.pb(id);
sumT += t;
sumC += c;
}
}
ids.clear();
return ll(sumT) * sumC;
}
} kruskal;
struct Point {
int x, y;
bool collinear(const Point &p1, const Point &p2) {
return ll(p2.y - p1.y) * (x - p1.x) == ll(y - p1.y) * (p2.x - p1.x);
}
};
pii slope(const Point &p1, const Point &p2) {
return {p1.y - p2.y, p1.x - p2.x};
}
// Minimize a * sumT + b * sumC = v
Point optimize(int a, int b) {
forn(i, m) {
auto &[u, v, t, c] = edges[i];
kruskal.addEdge(a*t + b*c, i);
}
ll val = kruskal.build();
if (val < mn) {
mn = val;
ba = a, bb = b;
}
return {sumC, sumT};
}
void computeConvexHull(const Point &x, const Point &y) {
auto [num, den] = slope(x, y);
if (den < 0) den = -den;
else if (num < 0) num = -num;
Point z = optimize(den, num);
if (z.collinear(x, y)) return;
computeConvexHull(x, z);
computeConvexHull(y, z);
}
int main() {
fastio;
cin >> n >> m;
edges.resize(m);
for (auto &[u, v, t, c] : edges)
cin >> u >> v >> t >> c;
computeConvexHull(optimize(0, 1), optimize(1, 0));
optimize(ba, bb);
cout << sumT << ' ';
cout << sumC << endl;
for (int id : mst) {
auto &[u, v, t, c] = edges[id];
cout << u << ' ' << v << endl;
}
return 0;
}
Compilation message
timeismoney.cpp: In member function 'll Kruskal::build()':
timeismoney.cpp:59:20: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17'
59 | for (auto &[cst, id] : ids) {
| ^
timeismoney.cpp:60:19: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17'
60 | auto &[u, v, t, c] = edges[id];
| ^
timeismoney.cpp: In function 'Point optimize(int, int)':
timeismoney.cpp:85:15: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17'
85 | auto &[u, v, t, c] = edges[i];
| ^
timeismoney.cpp: In function 'void computeConvexHull(const Point&, const Point&)':
timeismoney.cpp:97:10: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17'
97 | auto [num, den] = slope(x, y);
| ^
timeismoney.cpp: In function 'int main()':
timeismoney.cpp:111:16: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17'
111 | for (auto &[u, v, t, c] : edges)
| ^
timeismoney.cpp:120:15: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17'
120 | auto &[u, v, t, c] = edges[id];
| ^
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
416 KB |
Output is correct |
2 |
Correct |
0 ms |
384 KB |
Output is correct |
3 |
Correct |
1 ms |
384 KB |
Output is correct |
4 |
Correct |
1 ms |
384 KB |
Output is correct |
5 |
Correct |
1 ms |
384 KB |
Output is correct |
6 |
Correct |
1 ms |
384 KB |
Output is correct |
7 |
Correct |
2 ms |
384 KB |
Output is correct |
8 |
Correct |
11 ms |
896 KB |
Output is correct |
9 |
Correct |
1 ms |
384 KB |
Output is correct |
10 |
Correct |
1 ms |
384 KB |
Output is correct |
11 |
Correct |
1 ms |
384 KB |
Output is correct |
12 |
Correct |
1 ms |
384 KB |
Output is correct |
13 |
Correct |
1 ms |
384 KB |
Output is correct |
14 |
Correct |
7 ms |
384 KB |
Output is correct |
15 |
Correct |
4 ms |
384 KB |
Output is correct |
16 |
Correct |
105 ms |
384 KB |
Output is correct |
17 |
Correct |
102 ms |
384 KB |
Output is correct |
18 |
Correct |
95 ms |
504 KB |
Output is correct |
19 |
Correct |
859 ms |
904 KB |
Output is correct |
20 |
Correct |
886 ms |
896 KB |
Output is correct |