# | 제출 시각 | 아이디 | 문제 | 언어 | 결과 | 실행 시간 | 메모리 |
---|---|---|---|---|---|---|---|
266794 | Thistle | 다리 (APIO19_bridges) | C++14 | 0 ms | 0 KiB |
이 제출은 이전 버전의 oj.uz에서 채점하였습니다. 현재는 제출 당시와는 다른 서버에서 채점을 하기 때문에, 다시 제출하면 결과가 달라질 수도 있습니다.
#pragma GCC target ("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#define _USE_MATH_DEFINES
#include<iostream>
#include<string>
#include<queue>
#include<cmath>
#include<map>
#include<set>
#include<list>
#include<iomanip>
#include<vector>
#include<random>
#include<functional>
#include<algorithm>
#include<stack>
#include<cstdio>
#include<cstring>
#include<bitset>
#include<unordered_set>
#include<unordered_map>
#include<climits>
#include<fstream>
#include<complex>
#include<time.h>
#include<cassert>
#include<functional>
#include<numeric>
#include<tuple>
using namespace std;
using ll = long long;
using ld = long double;
#define int long long
#define all(a) (a).begin(),(a).end()
#define fs first
#define sc second
#define xx first
#define yy second.first
#define zz second.second
#define H pair<int, int>
#define P pair<int, pair<int, int>>
#define Q(i,j,k) mkp(i,mkp(j,k))
#define rng(i,s,n) for(int i = (s) ; i < (n) ; i++)
#define rep(i,n) rng(i, 0, (n))
#define mkp make_pair
#define vec vector
#define vi vec<int>
#define pb emplace_back
#define siz(a) (int)(a).size()
#define crdcomp(b) sort(all((b)));(b).erase(unique(all((b))),(b).end())
#define getidx(b,i) (lower_bound(all(b),(i))-(b).begin())
#define ssp(i,n) (i==(int)(n)-1?"\n":" ")
#define ctoi(c) (int)(c-'0')
#define itoc(c) (char)(c+'0')
#define cyes printf("Yes\n")
#define cno printf("No\n")
#define cdf(n) int quetimes_=(n);rep(qq123_,quetimes_)
#define gcj printf("Case #%lld: ",qq123_+1)
#define readv(a,n) a.resize(n,0);rep(i,(n)) a[i]=read()
#define found(a,x) (a.find(x)!=a.end())
//#define endl "\n"
constexpr int mod = (ll)1e9 + 7;
constexpr int Mod = 998244353;
constexpr ld EPS = 1e-10;
constexpr ll inf = (ll)3 * 1e18;
constexpr int Inf = (ll)15 * 1e8;
constexpr int dx[] = { -1,1,0,0 }, dy[] = { 0,0,-1,1 };
template<class T>bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }
template<class T>bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }
ll read() { ll u, k = scanf("%lld", &u); return u; }
string reads() { string s; cin >> s; return s; }
H readh(short g = 0) { H u; int k = scanf("%lld %lld", &u.fs, &u.sc); if (g == 1) u.fs--, u.sc--; if (g == 2) u.fs--; return u; }
bool ina(H t, int h, int w) { return 0 <= t.fs && t.fs < h && 0 <= t.sc && t.sc < w; }
bool ina(int t, int l, int r) { return l <= t && t < r; }
ll gcd(ll i, ll j) { return j ? gcd(j, i % j) : i; }
ll popcount(ll x) {
int sum = 0; for (int i = 0; i < 60; i++)if ((1ll << i) & x) sum++;
return sum;
}
template<typename T>
class csum {
vec<T> v;
public:
csum(vec<T>& a) :v(a) { build(); }
csum() {}
void init(vec<T>& a) { v = a; build(); }
void build() {
for (int i = 1; i < v.size(); i++) v[i] += v[i - 1];
}
T a(int l, int r) {
if (r < l) return 0;
return v[r] - (l == 0 ? 0 : v[l - 1]);
}//[l,r]
T b(int l, int r) {
return a(l, r - 1);
}//[l,r)
T a(pair<int, int>t) {
return a(t.first, t.second);
}
T b(pair<int, int>t) {
return b(t.first, t.second);
}
};
class mint {
public:ll v;
mint(ll v = 0) { s(v % mod + mod); }
constexpr static int mod = (ll)1e9 + 7;
constexpr static int fn_ = (ll)2e6 + 5;
static mint fact[fn_], comp[fn_];
mint pow(int x) const {
mint b(v), c(1);
while (x) {
if (x & 1) c *= b;
b *= b;
x >>= 1;
}
return c;
}
inline mint& s(int vv) {
v = vv < mod ? vv : vv - mod;
return *this;
}
inline mint inv()const { return pow(mod - 2); }
inline mint operator-()const { return mint() - *this; }
inline mint& operator+=(const mint b) { return s(v + b.v); }
inline mint& operator-=(const mint b) { return s(v + mod - b.v); }
inline mint& operator*=(const mint b) { v = v * b.v % mod; return *this; }
inline mint& operator/=(const mint b) { v = v * b.inv().v % mod; return *this; }
inline mint operator+(const mint b) const { return mint(v) += b; }
inline mint operator-(const mint b) const { return mint(v) -= b; }
inline mint operator*(const mint b) const { return mint(v) *= b; }
inline mint operator/(const mint b) const { return mint(v) /= b; }
friend ostream& operator<<(ostream& os, const mint& m) {
return os << m.v;
}
friend istream& operator>>(istream& is, mint& m) {
int x; is >> x; m = mint(x);
return is;
}
bool operator<(const mint& r)const { return v < r.v; }
bool operator>(const mint& r)const { return v > r.v; }
bool operator<=(const mint& r)const { return v <= r.v; }
bool operator>=(const mint& r)const { return v >= r.v; }
bool operator==(const mint& r)const { return v == r.v; }
bool operator!=(const mint& r)const { return v != r.v; }
explicit operator bool()const { return v; }
explicit operator int()const { return v; }
mint comb(mint k) {
if (k > * this) return mint();
if (!fact[0]) combinit();
if (v >= fn_) {
if (k > * this - k) k = *this - k;
mint tmp(1);
for (int i = v; i >= v - k.v + 1; i--) tmp *= mint(i);
return tmp * comp[k.v];
}
return fact[v] * comp[k.v] * comp[v - k.v];
}//nCk
mint perm(mint k) {
if (k > * this) return mint();
if (!fact[0]) combinit();
if (v >= fn_) {
mint tmp(1);
for (int i = v; i >= v - k.v + 1; i--) tmp *= mint(i);
return tmp;
}
return fact[v] * comp[v - k.v];
}//nPk
static void combinit() {
fact[0] = 1;
for (int i = 1; i < fn_; i++) fact[i] = fact[i - 1] * mint(i);
comp[fn_ - 1] = fact[fn_ - 1].inv();
for (int i = fn_ - 2; i >= 0; i--) comp[i] = comp[i + 1] * mint(i + 1);
}
}; mint mint::fact[fn_], mint::comp[fn_];
//--------------------------------------------------------------
class unionfind {
public:
int size = 0;
int pa[60000];
void init(int n) {
size = n;
for (int i = 0; i <= size; i++) pa[i] = -1;
}
int find(int x) {
if (pa[x] < 0) return x;
return pa[x] = find(pa[x]);
}
bool unite(int x, int y) {
x = find(x); y = find(y);
if (x == y) return false;
if (pa[x] > pa[y]) swap(x, y);
pa[x] += pa[y];
pa[y] = x;
return true;
}
bool same(int x, int y) {
return find(x) == find(y);
}
bool isroot(int x) {
return x == find(x);
}
int sz(int x) {
return -pa[find(x)];
}
H operator[](int x) {
x = find(x);
return H{ x,-pa[x] };
}
};
//---------------------------------------------------------------------
int n, m, q;
struct edg {
int a, b, cost;
vec<H>v;//時刻、コスト
};
vec<edg>edge;
bool chg[200000];
int numb[60000];
vec<P>qry;
int ans[200000];
vec<H>e[600000];
bool b[600000];
unionfind uf;
vi idx;
vi numbers[300000];
void solve(vec<P>& v, vi& ed) {
sort(all(v), [](P a, P b) {return a.yy > b.yy; });
//大きさが大きい順にソートをした
rep(i, n) { e[i].clear(); numb[i] = i; }
rep(i, siz(ed)) {
e[edge[ed[i]].a].pb(H{ edge[ed[i]].b,ed[i] });
e[edge[ed[i]].b].pb(H{ edge[ed[i]].a,ed[i] });
}
uf.init(n);
int cur = siz(idx) - 1;
for (auto& g : v) {
//gは今回のクエリ 辿っていきます
while (cur >= 0 && idx[cur] >= g.yy) {
for (auto& rt : numbers[cur]) {
int k = rt;
if (chg[k]) continue;
int a = edge[k].a, b = edge[k].b;
a = uf[a].fs, b = uf[b].fs;
if (a == b) continue;
uf.unite(b, a);
if (uf[a].fs == a) swap(a, b);
//aが親を変えられたうらみのある人
if (siz(e[numb[b]]) > siz(e[numb[a]])) {
for (auto& g : e[numb[a]]) {
e[numb[b]].pb(g);
}
}
else {
for (auto& g : e[numb[b]]) {
e[numb[a]].pb(g);
}
numb[b] = numb[a];
}
}
cur--;
}//グラフの縮約が完了した
vi vis;
function<int(int, int, int)> dfs = [&](int x, int cost, int num)->int {
//今回はこれ以上でないといけない
int sum = 0;
b[x] = 1;
vis.pb(x);
sum += uf[x].sc;
for (auto& g : e[numb[x]]) {
g.fs = uf[g.fs].fs;
int ttt = (*prev(partition_point(all(edge[g.sc].v), [num](H a)->bool {return a.fs <= num; }))).sc;
if (b[g.fs] || ttt < cost) continue;
//訪れたことがない、二分探索をした時のコストが自分よりも少なくない
sum += dfs(g.fs, cost, num);
}
return sum;
};
ans[g.zz] = dfs(uf[g.xx].fs, g.yy, g.zz);
for (auto r : vis) b[r] = 0;
}
}
signed main() {
n = read(), m = read();
int t, a, b, c;
edge.resize(m);
rep(i, m) {
a = read(), b = read(), c = read();
a--; b--;
idx.pb(c);
edge[i] = edg{ a,b,c,vec<H>(1,H{0,c}) };
}
q = read();
qry.resize(q);
rep(i, q) {
t = read(), a = read(), b = read();
a--;
qry[i] = Q(t, a, b);
if (t == 1) {
edge[a].v.pb(H{ i,b });
idx.pb(b);
}
}
crdcomp(idx);
rep(i, m) {
numbers[getidx(idx, edge[i].cost)].pb(i);
}
int sq = sqrt(q) *2.1
vec<P>qq; //どっちのクエリか、重量がどうなっているのか、次の情報
vi p;//道
for (int i = 0; i < q; i += sq) {
qq.clear(); p.clear();
for (int j = i; j < i + sq && j < q; j++) {
if (qry[j].xx == 1) {
chg[qry[j].yy] = 1;
p.pb(qry[j].yy);
}
else {
qq.pb(Q(qry[j].yy, qry[j].zz, j));
}
}
solve(qq, p);
for (int j = i; j < i + sq && j < q; j++) {
if (qry[j].xx == 1) {
chg[qry[j].yy] = 0;
edge[qry[j].yy].cost = qry[j].zz;
numbers[getidx(idx, qry[j].zz)].pb(qry[j].yy);
}
}
rep(j, siz(idx)) {
for (auto it = numbers[j].begin(); it != numbers[j].end(); ) {
if (edge[*it].cost != idx[j]) {
it = numbers[j].erase(it);
continue;
}
it++;
}
}
}
rep(i, q) {
if (qry[i].xx == 2) printf("%lld\n", ans[i]);
}
}