답안 #26587

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
26587 2017-07-03T10:13:12 Z model_code Golf (JOI17_golf) C++14
100 / 100
4828 ms 981664 KB
#include <iostream>
#include <cstdio>
#include <cassert>
#include <vector>
#include <utility>
#include <algorithm>
#include <tuple>
#include <set>
#include <queue>

using namespace std;

const int INF = 1000000010;
const int MAX_N = 100010;
const int SEGSIZE = (1<<18);

const int DEL = 0;
const int ASK = 1;
const int ADD = 2;

const int TATE = 0;
const int YOKO = 1;

typedef tuple<int,int,int> T;
typedef pair<int,int> P;

struct node{
  int val;
  node *chl, *chr;
  node(){}
  node( int val ): val(val), chl(NULL), chr(NULL) {}
  node( int val, node *chl, node *chr ) : val(val), chl(chl), chr(chr) {}
};

node nodes[41000010];
int np;

int val( node *t ){ return !t ? 0 : t->val; }
node* chl( node *t ){ return !t ? NULL : t->chl; }
node* chr( node *t ){ return !t ? NULL : t->chr; }

node* newnode( int val = 0, node *chl = NULL, node *chr = NULL ){
  nodes[np] = node( val , chl , chr );
  return &nodes[np++];
}

int add( int x , int id , int l , int r , node *cur ){
  if( r - l == 1 ){
    if( cur->val == 0 ){
      cur->val = id + 1;
      return 1;
    } else {
      return 0;
    }
  }
  int md = ( l + r ) / 2;
  int res = 0;
  if( x < md ){
    if( !chl(cur) ){
      cur->chl = newnode();
    }
    res = add( x , id , l , md , chl(cur) );
  } else {
    if( !chr(cur) ){
      cur->chr = newnode();
    }
    res = add( x , id , md , r , chr(cur) );
  }
  cur->val += res;
  return res;
}

int search( int a , int b , queue<P> &que, int dir, int dist[], int ndist, int l , int r , node *cur ){
  if( r - l == 1 ){
    if( cur->val == 0 ){
      return 0;
    }
    if( dist[val(cur)-1] == INF ){
      dist[val(cur)-1] = ndist;
      que.emplace( dir, val(cur)-1 );
    }
    cur->val = 0;
    return 1;
  }
  if( val(cur) == 0 ){
    return 0;
  }
  if( b <= l || r <= a ){
    return 0;
  } else {
    int md = ( l + r ) / 2;
    int chlr = 0;
    int chrr = 0;
    if( chl(cur) ){
      chlr = search( a , b , que , dir , dist , ndist , l , md , chl(cur) );
    }
    if( chr(cur) ){
      chrr = search( a , b , que , dir , dist , ndist , md , r , chr(cur) );
    }
    cur->val -= chlr + chrr;
    return chlr + chrr;
  }
}

void make_nex( vector<node*> &segs, queue<P> &que, int dist[], int ndist, int dir, int a , int b , int x , int l = 0, int r = SEGSIZE, int k = 0 ){
  search( a , b , que , dir , dist , ndist , 0 , SEGSIZE , segs[k] );
  if( r - l == 1 ){
    return;
  }
  if( x < (r+l)/2 ){
    make_nex( segs, que, dist, ndist, dir, a, b, x, l, (l+r)/2, k*2+1 );
  } else {
    make_nex( segs, que, dist, ndist, dir, a, b, x, (l+r)/2, r, k*2+2 );
  }
}

void devide_and_add( vector<node*> &segs, int id, int x, int top, int bottom, int l = 0, int r = SEGSIZE, int k = 0 ){
  if( top <= l and r <= bottom ){
    add( x , id , 0 , SEGSIZE, segs[k] );
  } else if( l < bottom and top < r ){
    devide_and_add( segs, id, x, top, bottom, l, (l+r)/2, k*2+1 );
    devide_and_add( segs, id, x, top, bottom, (l+r)/2, r, k*2+2 );
  }
}

void build_segtree( vector<node*> &segs, vector<T> &vec, int n, int sx, int sy, int tx, int ty, int a[], int b[], int c[], int d[] ){
  vector<T> sweep;
  sweep.emplace_back( -1, ADD, 0 );
  sweep.emplace_back( -1, ADD, SEGSIZE-1 );
  sweep.emplace_back( sx, ASK, sy );
  sweep.emplace_back( tx, ASK, ty );
  for( int i = 0; i < n; i++ ){
    sweep.emplace_back( a[i], ADD, c[i] );
    sweep.emplace_back( a[i], ADD, d[i] );
    sweep.emplace_back( b[i], DEL, c[i] );
    sweep.emplace_back( b[i], DEL, d[i] );
    sweep.emplace_back( a[i], ASK, c[i] );
    sweep.emplace_back( b[i], ASK, c[i] );
  }
  sort( sweep.begin() , sweep.end() );
  set<int> ss;
  int cnt = 0;
  for( T &q : sweep ){
    int x = get<0>(q);
    int type = get<1>(q);
    int y = get<2>(q);
    if( type == ADD ){
      ss.insert( y );
    } else if( type == DEL ){
      assert( ss.find( y ) != ss.end() );
      ss.erase( ss.find( y ) );
    } else {
      auto ite = ss.upper_bound( y );
      int bottom = (*ite);
      ite--;
      int top = (*ite);
      vec.emplace_back( x, top, bottom );
      devide_and_add( segs, int( vec.size() ) - 1, x, top, bottom+1 );
    }
  }
}

vector<int> compress( vector<int> v ){
  vector<int> ord = v;
  sort( ord.begin(), ord.end() );
  for( int &a : v ){
    a = lower_bound( ord.begin(), ord.end(), a ) - ord.begin() + 1;
  }
  return v;
}

int sx, sy, tx, ty;
int n;
int a[MAX_N], b[MAX_N], c[MAX_N], d[MAX_N];

vector<int> xs, ys;

vector<T> tate, yoko;
vector<node*> seg_tate, seg_yoko;

int tate_dist[MAX_N*2];
int yoko_dist[MAX_N*2];

queue<P> que;

int main(){
  
  scanf( "%d %d %d %d" , &sx , &sy , &tx , &ty );
  xs.push_back( sx );
  ys.push_back( sy );
  xs.push_back( tx );
  ys.push_back( ty );
  scanf( "%d" , &n );
  for( int i = 0; i < n; i++ ){
    scanf( "%d %d %d %d" , &a[i] , &b[i] , &c[i] , &d[i] );
    xs.push_back( a[i] );
    xs.push_back( b[i] );
    ys.push_back( c[i] );
    ys.push_back( d[i] );
  }

  xs = compress( xs );
  ys = compress( ys );
  
  sx = xs[0];
  sy = ys[0];
  tx = xs[1];
  ty = ys[1];
  for( int i = 0; i < n; i++ ){
    a[i] = xs[i*2+2];
    b[i] = xs[i*2+3];
    c[i] = ys[i*2+2];
    d[i] = ys[i*2+3];
  }

  for( int i = 0; i < SEGSIZE*2-1; i++ ){
    seg_tate.push_back( newnode() );
    seg_yoko.push_back( newnode() );
  }

  build_segtree( seg_tate, tate, n, sx, sy, tx, ty, a, b, c, d );
  build_segtree( seg_yoko, yoko, n, sy, sx, ty, tx, c, d, a, b );

  for( int i = 0; i < tate.size(); i++ ){
    if( get<0>( tate[i] ) == sx and get<1>( tate[i] ) <= sy and sy <= get<2>( tate[i] ) ){
      que.emplace( TATE, i );
      tate_dist[i] = 1;
    } else {
      tate_dist[i] = INF;
    }
  }
  
  for( int i = 0; i < yoko.size(); i++ ){
    if( get<0>( yoko[i] ) == sy and get<1>( yoko[i] ) <= sx and sx <= get<2>( yoko[i] ) ){
      que.emplace( YOKO, i );
      yoko_dist[i] = 1;
    } else {
      yoko_dist[i] = INF;
    }
  }

  while( not que.empty() ){
    int type = que.front().first;
    int id = que.front().second;
    que.pop();
    if( type == TATE ){
      int x = get<0>( tate[id] );
      int t = get<1>( tate[id] );
      int b = get<2>( tate[id] );
      if( x == tx and t <= ty and ty <= b ){
        printf( "%d\n" , tate_dist[id] );
        return 0;
      }
      make_nex( seg_yoko, que, yoko_dist, tate_dist[id]+1, YOKO, t, b, x );
    }
    if( type == YOKO ){
      int x = get<0>( yoko[id] );
      int t = get<1>( yoko[id] );
      int b = get<2>( yoko[id] );
      if( x == ty and t <= tx and tx <= b ){
        printf( "%d\n" , yoko_dist[id] );
        return 0;
      }
      make_nex( seg_tate, que, tate_dist, yoko_dist[id]+1, TATE, t, b, x );
    }
  }

  assert( false );
  
  return 0;
}

Compilation message

golf.cpp: In function 'void build_segtree(std::vector<node*>&, std::vector<std::tuple<int, int, int> >&, int, int, int, int, int, int*, int*, int*, int*)':
golf.cpp:142:7: warning: unused variable 'cnt' [-Wunused-variable]
   int cnt = 0;
       ^~~
golf.cpp: In function 'int main()':
golf.cpp:224:21: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
   for( int i = 0; i < tate.size(); i++ ){
                   ~~^~~~~~~~~~~~~
golf.cpp:233:21: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
   for( int i = 0; i < yoko.size(); i++ ){
                   ~~^~~~~~~~~~~~~
golf.cpp:188:8: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
   scanf( "%d %d %d %d" , &sx , &sy , &tx , &ty );
   ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
golf.cpp:193:8: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
   scanf( "%d" , &n );
   ~~~~~^~~~~~~~~~~~~
golf.cpp:195:10: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
     scanf( "%d %d %d %d" , &a[i] , &b[i] , &c[i] , &d[i] );
     ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 41 ms 33272 KB Output is correct
2 Correct 37 ms 33280 KB Output is correct
3 Correct 36 ms 33480 KB Output is correct
4 Correct 37 ms 33672 KB Output is correct
5 Correct 52 ms 37152 KB Output is correct
6 Correct 49 ms 37148 KB Output is correct
7 Correct 47 ms 36900 KB Output is correct
8 Correct 50 ms 37056 KB Output is correct
9 Correct 50 ms 37152 KB Output is correct
10 Correct 45 ms 37280 KB Output is correct
11 Correct 43 ms 37284 KB Output is correct
12 Correct 42 ms 37160 KB Output is correct
13 Correct 46 ms 37020 KB Output is correct
14 Correct 52 ms 37412 KB Output is correct
15 Correct 42 ms 34144 KB Output is correct
16 Correct 47 ms 35332 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 41 ms 33272 KB Output is correct
2 Correct 37 ms 33280 KB Output is correct
3 Correct 36 ms 33480 KB Output is correct
4 Correct 37 ms 33672 KB Output is correct
5 Correct 52 ms 37152 KB Output is correct
6 Correct 49 ms 37148 KB Output is correct
7 Correct 47 ms 36900 KB Output is correct
8 Correct 50 ms 37056 KB Output is correct
9 Correct 50 ms 37152 KB Output is correct
10 Correct 45 ms 37280 KB Output is correct
11 Correct 43 ms 37284 KB Output is correct
12 Correct 42 ms 37160 KB Output is correct
13 Correct 46 ms 37020 KB Output is correct
14 Correct 52 ms 37412 KB Output is correct
15 Correct 42 ms 34144 KB Output is correct
16 Correct 47 ms 35332 KB Output is correct
17 Correct 52 ms 37640 KB Output is correct
18 Correct 47 ms 37696 KB Output is correct
19 Correct 46 ms 37544 KB Output is correct
20 Correct 49 ms 37588 KB Output is correct
21 Correct 52 ms 37796 KB Output is correct
22 Correct 49 ms 37660 KB Output is correct
23 Correct 50 ms 37536 KB Output is correct
24 Correct 50 ms 37552 KB Output is correct
25 Correct 42 ms 37532 KB Output is correct
26 Correct 48 ms 37420 KB Output is correct
27 Correct 36 ms 34432 KB Output is correct
28 Correct 49 ms 35600 KB Output is correct
29 Correct 40 ms 35632 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 41 ms 33272 KB Output is correct
2 Correct 37 ms 33280 KB Output is correct
3 Correct 36 ms 33480 KB Output is correct
4 Correct 37 ms 33672 KB Output is correct
5 Correct 52 ms 37152 KB Output is correct
6 Correct 49 ms 37148 KB Output is correct
7 Correct 47 ms 36900 KB Output is correct
8 Correct 50 ms 37056 KB Output is correct
9 Correct 50 ms 37152 KB Output is correct
10 Correct 45 ms 37280 KB Output is correct
11 Correct 43 ms 37284 KB Output is correct
12 Correct 42 ms 37160 KB Output is correct
13 Correct 46 ms 37020 KB Output is correct
14 Correct 52 ms 37412 KB Output is correct
15 Correct 42 ms 34144 KB Output is correct
16 Correct 47 ms 35332 KB Output is correct
17 Correct 52 ms 37640 KB Output is correct
18 Correct 47 ms 37696 KB Output is correct
19 Correct 46 ms 37544 KB Output is correct
20 Correct 49 ms 37588 KB Output is correct
21 Correct 52 ms 37796 KB Output is correct
22 Correct 49 ms 37660 KB Output is correct
23 Correct 50 ms 37536 KB Output is correct
24 Correct 50 ms 37552 KB Output is correct
25 Correct 42 ms 37532 KB Output is correct
26 Correct 48 ms 37420 KB Output is correct
27 Correct 36 ms 34432 KB Output is correct
28 Correct 49 ms 35600 KB Output is correct
29 Correct 40 ms 35632 KB Output is correct
30 Correct 2445 ms 942164 KB Output is correct
31 Correct 2997 ms 954616 KB Output is correct
32 Correct 3917 ms 923112 KB Output is correct
33 Correct 4662 ms 939928 KB Output is correct
34 Correct 2969 ms 981664 KB Output is correct
35 Correct 4828 ms 968924 KB Output is correct
36 Correct 2651 ms 945832 KB Output is correct
37 Correct 3988 ms 922796 KB Output is correct
38 Correct 3298 ms 966280 KB Output is correct
39 Correct 4279 ms 928040 KB Output is correct
40 Correct 424 ms 74608 KB Output is correct
41 Correct 418 ms 74632 KB Output is correct
42 Correct 413 ms 74944 KB Output is correct
43 Correct 461 ms 74940 KB Output is correct
44 Correct 406 ms 75348 KB Output is correct
45 Correct 443 ms 75280 KB Output is correct
46 Correct 439 ms 75476 KB Output is correct
47 Correct 431 ms 75260 KB Output is correct
48 Correct 408 ms 75280 KB Output is correct
49 Correct 435 ms 75272 KB Output is correct
50 Correct 41 ms 35496 KB Output is correct
51 Correct 44 ms 35680 KB Output is correct
52 Correct 42 ms 35632 KB Output is correct