답안 #26586

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
26586 2017-07-03T10:12:37 Z model_code Golf (JOI17_golf) C++14
100 / 100
4494 ms 981832 KB
#include <iostream>
#include <cstdio>
#include <cassert>
#include <vector>
#include <utility>
#include <algorithm>
#include <tuple>
#include <set>
#include <queue>

using namespace std;

const int INF = 1000000010;
const int MAX_N = 100010;
const int SEGSIZE = (1<<18);

const int DEL = 0;
const int ASK = 1;
const int ADD = 2;

const int TATE = 0;
const int YOKO = 1;

typedef tuple<int,int,int> T;
typedef pair<int,int> P;

struct node{
  int val;
  node *chl, *chr;
  node(){}
  node( int val ): val(val), chl(NULL), chr(NULL) {}
  node( int val, node *chl, node *chr ) : val(val), chl(chl), chr(chr) {}
};

node nodes[50000010];
int np;

int val( node *t ){ return !t ? 0 : t->val; }
node* chl( node *t ){ return !t ? NULL : t->chl; }
node* chr( node *t ){ return !t ? NULL : t->chr; }

node* newnode( int val = 0, node *chl = NULL, node *chr = NULL ){
  nodes[np] = node( val , chl , chr );
  return &nodes[np++];
}

int add( int x , int id , int l , int r , node *cur ){
  if( r - l == 1 ){
    if( cur->val == 0 ){
      cur->val = id + 1;
      return 1;
    } else {
      return 0;
    }
  }
  int md = ( l + r ) / 2;
  int res = 0;
  if( x < md ){
    if( !chl(cur) ){
      cur->chl = newnode();
    }
    res = add( x , id , l , md , chl(cur) );
  } else {
    if( !chr(cur) ){
      cur->chr = newnode();
    }
    res = add( x , id , md , r , chr(cur) );
  }
  cur->val += res;
  return res;
}

int search( int a , int b , queue<P> &que, int dir, int dist[], int ndist, int l , int r , node *cur ){
  if( r - l == 1 ){
    if( cur->val == 0 ){
      return 0;
    }
    if( dist[val(cur)-1] == INF ){
      dist[val(cur)-1] = ndist;
      que.emplace( dir, val(cur)-1 );
    }
    cur->val = 0;
    return 1;
  }
  if( val(cur) == 0 ){
    return 0;
  }
  if( b <= l || r <= a ){
    return 0;
  } else {
    int md = ( l + r ) / 2;
    int chlr = 0;
    int chrr = 0;
    if( chl(cur) ){
      chlr = search( a , b , que , dir , dist , ndist , l , md , chl(cur) );
    }
    if( chr(cur) ){
      chrr = search( a , b , que , dir , dist , ndist , md , r , chr(cur) );
    }
    cur->val -= chlr + chrr;
    return chlr + chrr;
  }
}

void make_nex( vector<node*> &segs, queue<P> &que, int dist[], int ndist, int dir, int a , int b , int x , int l = 0, int r = SEGSIZE, int k = 0 ){
  search( a , b , que , dir , dist , ndist , 0 , SEGSIZE , segs[k] );
  if( r - l == 1 ){
    return;
  }
  if( x < (r+l)/2 ){
    make_nex( segs, que, dist, ndist, dir, a, b, x, l, (l+r)/2, k*2+1 );
  } else {
    make_nex( segs, que, dist, ndist, dir, a, b, x, (l+r)/2, r, k*2+2 );
  }
}

void devide_and_add( vector<node*> &segs, int id, int x, int top, int bottom, int l = 0, int r = SEGSIZE, int k = 0 ){
  if( top <= l and r <= bottom ){
    add( x , id , 0 , SEGSIZE, segs[k] );
  } else if( l < bottom and top < r ){
    devide_and_add( segs, id, x, top, bottom, l, (l+r)/2, k*2+1 );
    devide_and_add( segs, id, x, top, bottom, (l+r)/2, r, k*2+2 );
  }
}

void build_segtree( vector<node*> &segs, vector<T> &vec, int n, int sx, int sy, int tx, int ty, int a[], int b[], int c[], int d[] ){
  vector<T> sweep;
  sweep.emplace_back( -1, ADD, 0 );
  sweep.emplace_back( -1, ADD, SEGSIZE-1 );
  sweep.emplace_back( sx, ASK, sy );
  sweep.emplace_back( tx, ASK, ty );
  for( int i = 0; i < n; i++ ){
    sweep.emplace_back( a[i], ADD, c[i] );
    sweep.emplace_back( a[i], ADD, d[i] );
    sweep.emplace_back( b[i], DEL, c[i] );
    sweep.emplace_back( b[i], DEL, d[i] );
    sweep.emplace_back( a[i], ASK, c[i] );
    sweep.emplace_back( b[i], ASK, c[i] );
  }
  sort( sweep.begin() , sweep.end() );
  set<int> ss;
  int cnt = 0;
  for( T &q : sweep ){
    int x = get<0>(q);
    int type = get<1>(q);
    int y = get<2>(q);
    if( type == ADD ){
      ss.insert( y );
    } else if( type == DEL ){
      assert( ss.find( y ) != ss.end() );
      ss.erase( ss.find( y ) );
    } else {
      auto ite = ss.upper_bound( y );
      int bottom = (*ite);
      ite--;
      int top = (*ite);
      vec.emplace_back( x, top, bottom );
      devide_and_add( segs, int( vec.size() ) - 1, x, top, bottom+1 );
    }
  }
}

vector<int> compress( vector<int> v ){
  vector<int> ord = v;
  sort( ord.begin(), ord.end() );
  for( int &a : v ){
    a = lower_bound( ord.begin(), ord.end(), a ) - ord.begin() + 1;
  }
  return v;
}

int sx, sy, tx, ty;
int n;
int a[MAX_N], b[MAX_N], c[MAX_N], d[MAX_N];

vector<int> xs, ys;

vector<T> tate, yoko;
vector<node*> seg_tate, seg_yoko;

int tate_dist[MAX_N*2];
int yoko_dist[MAX_N*2];

queue<P> que;

int main(){
  
  scanf( "%d %d %d %d" , &sx , &sy , &tx , &ty );
  xs.push_back( sx );
  ys.push_back( sy );
  xs.push_back( tx );
  ys.push_back( ty );
  scanf( "%d" , &n );
  for( int i = 0; i < n; i++ ){
    scanf( "%d %d %d %d" , &a[i] , &b[i] , &c[i] , &d[i] );
    xs.push_back( a[i] );
    xs.push_back( b[i] );
    ys.push_back( c[i] );
    ys.push_back( d[i] );
  }

  xs = compress( xs );
  ys = compress( ys );
  
  sx = xs[0];
  sy = ys[0];
  tx = xs[1];
  ty = ys[1];
  for( int i = 0; i < n; i++ ){
    a[i] = xs[i*2+2];
    b[i] = xs[i*2+3];
    c[i] = ys[i*2+2];
    d[i] = ys[i*2+3];
  }

  for( int i = 0; i < SEGSIZE*2-1; i++ ){
    seg_tate.push_back( newnode() );
    seg_yoko.push_back( newnode() );
  }

  build_segtree( seg_tate, tate, n, sx, sy, tx, ty, a, b, c, d );
  build_segtree( seg_yoko, yoko, n, sy, sx, ty, tx, c, d, a, b );

  for( int i = 0; i < tate.size(); i++ ){
    if( get<0>( tate[i] ) == sx and get<1>( tate[i] ) <= sy and sy <= get<2>( tate[i] ) ){
      que.emplace( TATE, i );
      tate_dist[i] = 1;
    } else {
      tate_dist[i] = INF;
    }
  }
  
  for( int i = 0; i < yoko.size(); i++ ){
    if( get<0>( yoko[i] ) == sy and get<1>( yoko[i] ) <= sx and sx <= get<2>( yoko[i] ) ){
      que.emplace( YOKO, i );
      yoko_dist[i] = 1;
    } else {
      yoko_dist[i] = INF;
    }
  }

  while( not que.empty() ){
    int type = que.front().first;
    int id = que.front().second;
    que.pop();
    if( type == TATE ){
      int x = get<0>( tate[id] );
      int t = get<1>( tate[id] );
      int b = get<2>( tate[id] );
      if( x == tx and t <= ty and ty <= b ){
        printf( "%d\n" , tate_dist[id] );
        return 0;
      }
      make_nex( seg_yoko, que, yoko_dist, tate_dist[id]+1, YOKO, t, b, x );
    }
    if( type == YOKO ){
      int x = get<0>( yoko[id] );
      int t = get<1>( yoko[id] );
      int b = get<2>( yoko[id] );
      if( x == ty and t <= tx and tx <= b ){
        printf( "%d\n" , yoko_dist[id] );
        return 0;
      }
      make_nex( seg_tate, que, tate_dist, yoko_dist[id]+1, TATE, t, b, x );
    }
  }

  assert( false );
  
  return 0;
}

Compilation message

golf.cpp: In function 'void build_segtree(std::vector<node*>&, std::vector<std::tuple<int, int, int> >&, int, int, int, int, int, int*, int*, int*, int*)':
golf.cpp:142:7: warning: unused variable 'cnt' [-Wunused-variable]
   int cnt = 0;
       ^~~
golf.cpp: In function 'int main()':
golf.cpp:224:21: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
   for( int i = 0; i < tate.size(); i++ ){
                   ~~^~~~~~~~~~~~~
golf.cpp:233:21: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
   for( int i = 0; i < yoko.size(); i++ ){
                   ~~^~~~~~~~~~~~~
golf.cpp:188:8: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
   scanf( "%d %d %d %d" , &sx , &sy , &tx , &ty );
   ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
golf.cpp:193:8: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
   scanf( "%d" , &n );
   ~~~~~^~~~~~~~~~~~~
golf.cpp:195:10: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
     scanf( "%d %d %d %d" , &a[i] , &b[i] , &c[i] , &d[i] );
     ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 38 ms 33284 KB Output is correct
2 Correct 36 ms 33416 KB Output is correct
3 Correct 34 ms 33372 KB Output is correct
4 Correct 37 ms 33664 KB Output is correct
5 Correct 58 ms 37160 KB Output is correct
6 Correct 47 ms 37152 KB Output is correct
7 Correct 48 ms 36904 KB Output is correct
8 Correct 51 ms 37172 KB Output is correct
9 Correct 48 ms 37284 KB Output is correct
10 Correct 45 ms 37264 KB Output is correct
11 Correct 56 ms 37280 KB Output is correct
12 Correct 45 ms 37140 KB Output is correct
13 Correct 54 ms 37000 KB Output is correct
14 Correct 57 ms 37276 KB Output is correct
15 Correct 39 ms 34256 KB Output is correct
16 Correct 49 ms 35356 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 38 ms 33284 KB Output is correct
2 Correct 36 ms 33416 KB Output is correct
3 Correct 34 ms 33372 KB Output is correct
4 Correct 37 ms 33664 KB Output is correct
5 Correct 58 ms 37160 KB Output is correct
6 Correct 47 ms 37152 KB Output is correct
7 Correct 48 ms 36904 KB Output is correct
8 Correct 51 ms 37172 KB Output is correct
9 Correct 48 ms 37284 KB Output is correct
10 Correct 45 ms 37264 KB Output is correct
11 Correct 56 ms 37280 KB Output is correct
12 Correct 45 ms 37140 KB Output is correct
13 Correct 54 ms 37000 KB Output is correct
14 Correct 57 ms 37276 KB Output is correct
15 Correct 39 ms 34256 KB Output is correct
16 Correct 49 ms 35356 KB Output is correct
17 Correct 61 ms 37668 KB Output is correct
18 Correct 49 ms 37628 KB Output is correct
19 Correct 50 ms 37536 KB Output is correct
20 Correct 50 ms 37532 KB Output is correct
21 Correct 53 ms 37792 KB Output is correct
22 Correct 49 ms 37664 KB Output is correct
23 Correct 49 ms 37636 KB Output is correct
24 Correct 52 ms 37660 KB Output is correct
25 Correct 62 ms 37540 KB Output is correct
26 Correct 47 ms 37404 KB Output is correct
27 Correct 39 ms 34396 KB Output is correct
28 Correct 53 ms 35496 KB Output is correct
29 Correct 43 ms 35604 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 38 ms 33284 KB Output is correct
2 Correct 36 ms 33416 KB Output is correct
3 Correct 34 ms 33372 KB Output is correct
4 Correct 37 ms 33664 KB Output is correct
5 Correct 58 ms 37160 KB Output is correct
6 Correct 47 ms 37152 KB Output is correct
7 Correct 48 ms 36904 KB Output is correct
8 Correct 51 ms 37172 KB Output is correct
9 Correct 48 ms 37284 KB Output is correct
10 Correct 45 ms 37264 KB Output is correct
11 Correct 56 ms 37280 KB Output is correct
12 Correct 45 ms 37140 KB Output is correct
13 Correct 54 ms 37000 KB Output is correct
14 Correct 57 ms 37276 KB Output is correct
15 Correct 39 ms 34256 KB Output is correct
16 Correct 49 ms 35356 KB Output is correct
17 Correct 61 ms 37668 KB Output is correct
18 Correct 49 ms 37628 KB Output is correct
19 Correct 50 ms 37536 KB Output is correct
20 Correct 50 ms 37532 KB Output is correct
21 Correct 53 ms 37792 KB Output is correct
22 Correct 49 ms 37664 KB Output is correct
23 Correct 49 ms 37636 KB Output is correct
24 Correct 52 ms 37660 KB Output is correct
25 Correct 62 ms 37540 KB Output is correct
26 Correct 47 ms 37404 KB Output is correct
27 Correct 39 ms 34396 KB Output is correct
28 Correct 53 ms 35496 KB Output is correct
29 Correct 43 ms 35604 KB Output is correct
30 Correct 2510 ms 942028 KB Output is correct
31 Correct 3056 ms 954508 KB Output is correct
32 Correct 3970 ms 923140 KB Output is correct
33 Correct 4494 ms 939868 KB Output is correct
34 Correct 3098 ms 981832 KB Output is correct
35 Correct 4434 ms 968960 KB Output is correct
36 Correct 2694 ms 946044 KB Output is correct
37 Correct 3480 ms 922736 KB Output is correct
38 Correct 2886 ms 966176 KB Output is correct
39 Correct 3747 ms 927996 KB Output is correct
40 Correct 420 ms 74612 KB Output is correct
41 Correct 418 ms 74736 KB Output is correct
42 Correct 432 ms 75012 KB Output is correct
43 Correct 436 ms 75008 KB Output is correct
44 Correct 414 ms 75312 KB Output is correct
45 Correct 508 ms 75336 KB Output is correct
46 Correct 448 ms 75280 KB Output is correct
47 Correct 435 ms 75312 KB Output is correct
48 Correct 425 ms 75344 KB Output is correct
49 Correct 444 ms 75328 KB Output is correct
50 Correct 44 ms 35492 KB Output is correct
51 Correct 43 ms 35624 KB Output is correct
52 Correct 42 ms 35492 KB Output is correct