답안 #26566

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
26566 2017-07-03T06:17:39 Z model_code Golf (JOI17_golf) C++11
100 / 100
4762 ms 981596 KB
#include <iostream>
#include <cstdio>
#include <cassert>
#include <vector>
#include <utility>
#include <algorithm>
#include <tuple>
#include <set>
#include <queue>

using namespace std;

const int INF = 1000000010;
const int MAX_N = 100010;
const int SEGSIZE = (1<<18);

const int DEL = 0;
const int ASK = 1;
const int ADD = 2;

const int TATE = 0;
const int YOKO = 1;

typedef tuple<int,int,int> T;
typedef pair<int,int> P;

struct node{
  int val;
  node *chl, *chr;
  node(){}
  node( int val ): val(val), chl(NULL), chr(NULL) {}
  node( int val, node *chl, node *chr ) : val(val), chl(chl), chr(chr) {}
};

node nodes[45000010];
int np;

int val( node *t ){ return !t ? 0 : t->val; }
node* chl( node *t ){ return !t ? NULL : t->chl; }
node* chr( node *t ){ return !t ? NULL : t->chr; }

node* newnode( int val = 0, node *chl = NULL, node *chr = NULL ){
  nodes[np] = node( val , chl , chr );
  return &nodes[np++];
}

int add( int x , int id , int l , int r , node *cur ){
  if( r - l == 1 ){
    if( cur->val == 0 ){
      cur->val = id + 1;
      return 1;
    } else {
      return 0;
    }
  }
  int md = ( l + r ) / 2;
  int res = 0;
  if( x < md ){
    if( !chl(cur) ){
      cur->chl = newnode();
    }
    res = add( x , id , l , md , chl(cur) );
  } else {
    if( !chr(cur) ){
      cur->chr = newnode();
    }
    res = add( x , id , md , r , chr(cur) );
  }
  cur->val += res;
  return res;
}

int search( int a , int b , queue<P> &que, int dir, int dist[], int ndist, int l , int r , node *cur ){
  if( r - l == 1 ){
    if( cur->val == 0 ){
      return 0;
    }
    if( dist[val(cur)-1] == INF ){
      dist[val(cur)-1] = ndist;
      que.emplace( dir, val(cur)-1 );
    }
    cur->val = 0;
    return 1;
  }
  if( val(cur) == 0 ){
    return 0;
  }
  if( b <= l || r <= a ){
    return 0;
  } else {
    int md = ( l + r ) / 2;
    int chlr = 0;
    int chrr = 0;
    if( chl(cur) ){
      chlr = search( a , b , que , dir , dist , ndist , l , md , chl(cur) );
    }
    if( chr(cur) ){
      chrr = search( a , b , que , dir , dist , ndist , md , r , chr(cur) );
    }
    cur->val -= chlr + chrr;
    return chlr + chrr;
  }
}

void make_nex( vector<node*> &segs, queue<P> &que, int dist[], int ndist, int dir, int a , int b , int x , int l = 0, int r = SEGSIZE, int k = 0 ){
  search( a , b , que , dir , dist , ndist , 0 , SEGSIZE , segs[k] );
  if( r - l == 1 ){
    return;
  }
  if( x < (r+l)/2 ){
    make_nex( segs, que, dist, ndist, dir, a, b, x, l, (l+r)/2, k*2+1 );
  } else {
    make_nex( segs, que, dist, ndist, dir, a, b, x, (l+r)/2, r, k*2+2 );
  }
}

void devide_and_add( vector<node*> &segs, int id, int x, int top, int bottom, int l = 0, int r = SEGSIZE, int k = 0 ){
  if( top <= l and r <= bottom ){
    add( x , id , 0 , SEGSIZE, segs[k] );
  } else if( l < bottom and top < r ){
    devide_and_add( segs, id, x, top, bottom, l, (l+r)/2, k*2+1 );
    devide_and_add( segs, id, x, top, bottom, (l+r)/2, r, k*2+2 );
  }
}

void build_segtree( vector<node*> &segs, vector<T> &vec, int n, int sx, int sy, int tx, int ty, int a[], int b[], int c[], int d[] ){
  vector<T> sweep;
  sweep.emplace_back( -1, ADD, 0 );
  sweep.emplace_back( -1, ADD, SEGSIZE-1 );
  sweep.emplace_back( sx, ASK, sy );
  sweep.emplace_back( tx, ASK, ty );
  for( int i = 0; i < n; i++ ){
    sweep.emplace_back( a[i], ADD, c[i] );
    sweep.emplace_back( a[i], ADD, d[i] );
    sweep.emplace_back( b[i], DEL, c[i] );
    sweep.emplace_back( b[i], DEL, d[i] );
    sweep.emplace_back( a[i], ASK, c[i] );
    sweep.emplace_back( b[i], ASK, c[i] );
  }
  sort( sweep.begin() , sweep.end() );
  set<int> ss;
  int cnt = 0;
  for( T &q : sweep ){
    int x = get<0>(q);
    int type = get<1>(q);
    int y = get<2>(q);
    if( type == ADD ){
      ss.insert( y );
    } else if( type == DEL ){
      assert( ss.find( y ) != ss.end() );
      ss.erase( ss.find( y ) );
    } else {
      auto ite = ss.upper_bound( y );
      int bottom = (*ite);
      ite--;
      int top = (*ite);
      vec.emplace_back( x, top, bottom );
      devide_and_add( segs, int( vec.size() ) - 1, x, top, bottom+1 );
    }
  }
}

vector<int> compress( vector<int> v ){
  vector<int> ord = v;
  sort( ord.begin(), ord.end() );
  for( int &a : v ){
    a = lower_bound( ord.begin(), ord.end(), a ) - ord.begin() + 1;
  }
  return v;
}

int sx, sy, tx, ty;
int n;
int a[MAX_N], b[MAX_N], c[MAX_N], d[MAX_N];

vector<int> xs, ys;

vector<T> tate, yoko;
vector<node*> seg_tate, seg_yoko;

int tate_dist[MAX_N*2];
int yoko_dist[MAX_N*2];

queue<P> que;

int main(){
  
  scanf( "%d %d %d %d" , &sx , &sy , &tx , &ty );
  xs.push_back( sx );
  ys.push_back( sy );
  xs.push_back( tx );
  ys.push_back( ty );
  scanf( "%d" , &n );
  for( int i = 0; i < n; i++ ){
    scanf( "%d %d %d %d" , &a[i] , &b[i] , &c[i] , &d[i] );
    xs.push_back( a[i] );
    xs.push_back( b[i] );
    ys.push_back( c[i] );
    ys.push_back( d[i] );
  }

  xs = compress( xs );
  ys = compress( ys );
  
  sx = xs[0];
  sy = ys[0];
  tx = xs[1];
  ty = ys[1];
  for( int i = 0; i < n; i++ ){
    a[i] = xs[i*2+2];
    b[i] = xs[i*2+3];
    c[i] = ys[i*2+2];
    d[i] = ys[i*2+3];
  }

  for( int i = 0; i < SEGSIZE*2-1; i++ ){
    seg_tate.push_back( newnode() );
    seg_yoko.push_back( newnode() );
  }

  build_segtree( seg_tate, tate, n, sx, sy, tx, ty, a, b, c, d );
  build_segtree( seg_yoko, yoko, n, sy, sx, ty, tx, c, d, a, b );

  for( int i = 0; i < tate.size(); i++ ){
    if( get<0>( tate[i] ) == sx and get<1>( tate[i] ) <= sy and sy <= get<2>( tate[i] ) ){
      que.emplace( TATE, i );
      tate_dist[i] = 1;
    } else {
      tate_dist[i] = INF;
    }
  }
  
  for( int i = 0; i < yoko.size(); i++ ){
    if( get<0>( yoko[i] ) == sy and get<1>( yoko[i] ) <= sx and sx <= get<2>( yoko[i] ) ){
      que.emplace( YOKO, i );
      yoko_dist[i] = 1;
    } else {
      yoko_dist[i] = INF;
    }
  }

  while( not que.empty() ){
    int type = que.front().first;
    int id = que.front().second;
    que.pop();
    if( type == TATE ){
      int x = get<0>( tate[id] );
      int t = get<1>( tate[id] );
      int b = get<2>( tate[id] );
      if( x == tx and t <= ty and ty <= b ){
        printf( "%d\n" , tate_dist[id] );
        return 0;
      }
      make_nex( seg_yoko, que, yoko_dist, tate_dist[id]+1, YOKO, t, b, x );
    }
    if( type == YOKO ){
      int x = get<0>( yoko[id] );
      int t = get<1>( yoko[id] );
      int b = get<2>( yoko[id] );
      if( x == ty and t <= tx and tx <= b ){
        printf( "%d\n" , yoko_dist[id] );
        return 0;
      }
      make_nex( seg_tate, que, tate_dist, yoko_dist[id]+1, TATE, t, b, x );
    }
  }

  assert( false );
  
  return 0;
}

Compilation message

golf.cpp: In function 'void build_segtree(std::vector<node*>&, std::vector<std::tuple<int, int, int> >&, int, int, int, int, int, int*, int*, int*, int*)':
golf.cpp:142:7: warning: unused variable 'cnt' [-Wunused-variable]
   int cnt = 0;
       ^~~
golf.cpp: In function 'int main()':
golf.cpp:224:21: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
   for( int i = 0; i < tate.size(); i++ ){
                   ~~^~~~~~~~~~~~~
golf.cpp:233:21: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
   for( int i = 0; i < yoko.size(); i++ ){
                   ~~^~~~~~~~~~~~~
golf.cpp:188:8: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
   scanf( "%d %d %d %d" , &sx , &sy , &tx , &ty );
   ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
golf.cpp:193:8: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
   scanf( "%d" , &n );
   ~~~~~^~~~~~~~~~~~~
golf.cpp:195:10: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
     scanf( "%d %d %d %d" , &a[i] , &b[i] , &c[i] , &d[i] );
     ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 32 ms 33404 KB Output is correct
2 Correct 34 ms 33280 KB Output is correct
3 Correct 37 ms 33488 KB Output is correct
4 Correct 43 ms 33724 KB Output is correct
5 Correct 49 ms 37160 KB Output is correct
6 Correct 58 ms 37148 KB Output is correct
7 Correct 49 ms 36892 KB Output is correct
8 Correct 61 ms 37136 KB Output is correct
9 Correct 49 ms 37276 KB Output is correct
10 Correct 47 ms 37272 KB Output is correct
11 Correct 47 ms 37244 KB Output is correct
12 Correct 51 ms 37156 KB Output is correct
13 Correct 65 ms 37016 KB Output is correct
14 Correct 48 ms 37284 KB Output is correct
15 Correct 40 ms 34180 KB Output is correct
16 Correct 43 ms 35364 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 32 ms 33404 KB Output is correct
2 Correct 34 ms 33280 KB Output is correct
3 Correct 37 ms 33488 KB Output is correct
4 Correct 43 ms 33724 KB Output is correct
5 Correct 49 ms 37160 KB Output is correct
6 Correct 58 ms 37148 KB Output is correct
7 Correct 49 ms 36892 KB Output is correct
8 Correct 61 ms 37136 KB Output is correct
9 Correct 49 ms 37276 KB Output is correct
10 Correct 47 ms 37272 KB Output is correct
11 Correct 47 ms 37244 KB Output is correct
12 Correct 51 ms 37156 KB Output is correct
13 Correct 65 ms 37016 KB Output is correct
14 Correct 48 ms 37284 KB Output is correct
15 Correct 40 ms 34180 KB Output is correct
16 Correct 43 ms 35364 KB Output is correct
17 Correct 48 ms 37556 KB Output is correct
18 Correct 47 ms 37668 KB Output is correct
19 Correct 45 ms 37536 KB Output is correct
20 Correct 50 ms 37592 KB Output is correct
21 Correct 51 ms 37860 KB Output is correct
22 Correct 50 ms 37792 KB Output is correct
23 Correct 44 ms 37540 KB Output is correct
24 Correct 52 ms 37680 KB Output is correct
25 Correct 42 ms 37552 KB Output is correct
26 Correct 50 ms 37408 KB Output is correct
27 Correct 37 ms 34440 KB Output is correct
28 Correct 42 ms 35612 KB Output is correct
29 Correct 46 ms 35624 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 32 ms 33404 KB Output is correct
2 Correct 34 ms 33280 KB Output is correct
3 Correct 37 ms 33488 KB Output is correct
4 Correct 43 ms 33724 KB Output is correct
5 Correct 49 ms 37160 KB Output is correct
6 Correct 58 ms 37148 KB Output is correct
7 Correct 49 ms 36892 KB Output is correct
8 Correct 61 ms 37136 KB Output is correct
9 Correct 49 ms 37276 KB Output is correct
10 Correct 47 ms 37272 KB Output is correct
11 Correct 47 ms 37244 KB Output is correct
12 Correct 51 ms 37156 KB Output is correct
13 Correct 65 ms 37016 KB Output is correct
14 Correct 48 ms 37284 KB Output is correct
15 Correct 40 ms 34180 KB Output is correct
16 Correct 43 ms 35364 KB Output is correct
17 Correct 48 ms 37556 KB Output is correct
18 Correct 47 ms 37668 KB Output is correct
19 Correct 45 ms 37536 KB Output is correct
20 Correct 50 ms 37592 KB Output is correct
21 Correct 51 ms 37860 KB Output is correct
22 Correct 50 ms 37792 KB Output is correct
23 Correct 44 ms 37540 KB Output is correct
24 Correct 52 ms 37680 KB Output is correct
25 Correct 42 ms 37552 KB Output is correct
26 Correct 50 ms 37408 KB Output is correct
27 Correct 37 ms 34440 KB Output is correct
28 Correct 42 ms 35612 KB Output is correct
29 Correct 46 ms 35624 KB Output is correct
30 Correct 2558 ms 942016 KB Output is correct
31 Correct 3182 ms 954516 KB Output is correct
32 Correct 4035 ms 923112 KB Output is correct
33 Correct 4762 ms 939876 KB Output is correct
34 Correct 3150 ms 981596 KB Output is correct
35 Correct 4438 ms 969012 KB Output is correct
36 Correct 2430 ms 945912 KB Output is correct
37 Correct 3712 ms 922800 KB Output is correct
38 Correct 3185 ms 966732 KB Output is correct
39 Correct 3930 ms 928676 KB Output is correct
40 Correct 447 ms 74772 KB Output is correct
41 Correct 422 ms 74712 KB Output is correct
42 Correct 419 ms 74952 KB Output is correct
43 Correct 457 ms 75056 KB Output is correct
44 Correct 442 ms 75252 KB Output is correct
45 Correct 479 ms 75324 KB Output is correct
46 Correct 428 ms 75304 KB Output is correct
47 Correct 474 ms 75284 KB Output is correct
48 Correct 457 ms 75328 KB Output is correct
49 Correct 442 ms 75440 KB Output is correct
50 Correct 43 ms 35492 KB Output is correct
51 Correct 44 ms 35632 KB Output is correct
52 Correct 46 ms 35620 KB Output is correct