Submission #257861

# Submission time Handle Problem Language Result Execution time Memory
257861 2020-08-04T22:48:56 Z Blagojce Amusement Park (JOI17_amusement_park) C++17
100 / 100
38 ms 14492 KB
#include <bits/stdc++.h> 
#define fr(i, n, m) for(int i = (n); i < (m); i ++)
#define pb push_back
#define st first
#define nd second
#define pq priority_queue
#define all(x) begin(x), end(x)
#include <time.h>
#include <cmath>
 
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<int,int> pii;
 
const int i_inf = 1e9;
const ll inf = 1e17;
const ll mod = 1000000007;
const ld eps = 1e-13;
const ld pi  = 3.14159265359;
 
mt19937 _rand(time(NULL));
clock_t timer = clock();
const int mxn = 1e5;
 
#include "Joi.h"
/*int VAL[mxn];
void MessageBoard(int u, int val){
	VAL[u] = val;
	return;
}*/
 
int n, m;
int a[mxn], b[mxn];
bool vis[mxn];
vector<int> g[mxn];
 
int itopos[mxn];
int temp_p = 0;
 
int depth[mxn];
int mx_depth[mxn];
int best_child[mxn];

vector<int> G[mxn];

void dfs(int u){
	itopos[u] = temp_p++;
	vis[u] = true;
	mx_depth[u] = depth[u];
	best_child[u] = u;
	for(auto e : g[u]){
		if(vis[e]) continue;
		depth[e] = depth[u] + 1;
		G[u].pb(e);
		
		dfs(e);
		if(mx_depth[u] < mx_depth[e]){
			mx_depth[u] = mx_depth[e];
			best_child[u] = e;
		}
	}
}
int REM;
int pos_to_mark;
ll x;
void dfs2(int u, int flag){
	if(flag == 0){
		if(x&(1LL<<pos_to_mark)) MessageBoard(u, 1);
		else MessageBoard(u, 0);
		++pos_to_mark;
	}
	else{
		if(REM > 0){
			if(x&(1LL<<pos_to_mark)) MessageBoard(u, 1);
			else MessageBoard(u, 0);
			++pos_to_mark;
			--REM;
		}
		else{
			MessageBoard(u, 0);
		}
	}
	if(flag == 1){
		for(auto e : G[u]){
			dfs2(e, 1);
		}
	}
	else{
		for(auto e : G[u]){
			if(e == best_child[u]) continue;
			dfs2(e, 1);
		}
		if(u != best_child[u]) dfs2(best_child[u], 0);
	}
}


void Joi(int N, int M, int A[], int B[], long long X, int T) {
	n = N, m = M, x = X;
	fr(i, 0, m) a[i] = A[i], b[i] = B[i];
	fr(i, 0, m){
		g[a[i]].pb(b[i]);
		g[b[i]].pb(a[i]);
	}
	dfs(0);
	int mxd = 0;
	fr(i, 0, n) mxd = max(mxd, depth[i]);
	if(mxd < 59){
		REM = 60 - (mx_depth[0]+1);
		dfs2(0, 0);
		/*fr(i, 0, n){
			if(X&(1LL<<(itopos[i]%60))) MessageBoard(i,1); 
			else MessageBoard(i,0);
		}*/
	}
	else{
		fr(i, 0, n){
			if(X&(1LL<<(depth[i]%60)))MessageBoard(i,1); 
			else MessageBoard(i,0);
		}
	}
	
}
#include <bits/stdc++.h> 
#define fr(i, n, m) for(int i = (n); i < (m); i ++)
#define pb push_back
#define st first
#define nd second
#define pq priority_queue
#define all(x) begin(x), end(x)
#include <time.h>
#include <cmath>
 
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<int,int> pii;
 
const int i_inf = 1e9;
const ll inf = 1e17;
const ll mod = 1000000007;
const ld eps = 1e-13;
const ld pi  = 3.14159265359;
 
mt19937 _rand(time(NULL));
clock_t timer = clock();
const int mxn = 1e5;
#include "Ioi.h"
/*
int mark[60] = {1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
int Move(int u){
	cout<<u<<endl;
	return mark[u];
}*/

int n, m;
int a[mxn], b[mxn];
bool vis[mxn];
vector<int> g[mxn];

int postoi[mxn];
int temp_p = 0;

vector<int> v;

int val[mxn];
int parent[mxn];
int depth[mxn];
int mx_depth[mxn];

int best_child[mxn];
vector<int> G[mxn];

void dfs(int u, int p){
	parent[u] = p;
	postoi[temp_p] = u;
	++temp_p;
	
	vis[u] = true;
	mx_depth[u] = depth[u];
	best_child[u] = u;
	for(auto e : g[u]){
		if(vis[e]) continue;		
		G[u].pb(e);
		
		depth[e] = depth[u] + 1;
		dfs(e, u);
		if(mx_depth[e] > mx_depth[u]){
			mx_depth[u] = mx_depth[e];
			best_child[u] = e;
		}
	
	}
}
/*
int loc_pos;
void dfs2(int u, int p, int tv){
	loc_pos ++;
	val[u] = tv;
	vis[u] = true;
	if(loc_pos == 60) return;
	
	for(auto e : g[u]){
		if(vis[e]) continue;
		dfs2(e, u, Move(e));
		if(loc_pos == 60) return;
	}
	
	if(u != p) Move(parent[u]);
}*/

int REM;
int pos_to_mark;
ll x;
void dfs2(int u, int flag, int tv){
	x |= (1LL<<pos_to_mark)*tv;
	++pos_to_mark;
	
	if(flag == 1){
		--REM;
		if(REM == 0){
			Move(parent[u]);
			return;
		}
		
		for(auto e : G[u]){
			dfs2(e, 1, Move(e));
			if(REM == 0) break;
		}
		Move(parent[u]);
	}
	else{
		
		for(auto e : G[u]){
			if(e == best_child[u]) continue;
			
			if(REM == 0) break;
			dfs2(e, 1, Move(e));
		}
		if(u != best_child[u]) dfs2(best_child[u], 0, Move(best_child[u]));
		return;
	}
}


long long Ioi(int N, int M, int A[], int B[], int P, int V, int T) {
	n = N, m = M;
	fr(i, 0, m) a[i] = A[i], b[i] = B[i];
	fr(i, 0, m){
		g[a[i]].pb(b[i]);
		g[b[i]].pb(a[i]);
	}
	dfs(0, 0);
	
	if(mx_depth[0] < 59){	
		while(P != 0) V = Move(parent[P]), P = parent[P];
		
		REM = 60 - (mx_depth[0]+1);
		dfs2(0, 0, V);
		
		/*while(P != 0) V = Move(parent[P]), P = parent[P];
		val[0] = V;
		
		memset(vis, false, sizeof(vis));
		dfs2(0, 0, V);
		
		ll X = 0;
		fr(i, 0, 60){
			X |= (1LL<<i)*val[postoi[i]];
		}*/
		return x;
	}
	else{
		while(depth[P]%60 != 0) V = Move(parent[P]), P = parent[P];
		ll X = 0;
		if(mx_depth[P]-depth[P]<59){
			fr(i, 0, 60){
				V = Move(parent[P]);
				P = parent[P];
				X  |= (1LL<<(59-i))*V;
			}
		}
		else{
			X |= (1LL << 0)*V;
			fr(i, 1, 60){
				V = Move(best_child[P]);
				P = best_child[P];
				X |= (1LL<<i)*V;
			}
		}
		return X;
	}
}
# Verdict Execution time Memory Grader output
1 Correct 7 ms 10364 KB Output is correct
2 Correct 7 ms 10492 KB Output is correct
3 Correct 7 ms 10472 KB Output is correct
4 Correct 7 ms 10488 KB Output is correct
5 Correct 6 ms 10488 KB Output is correct
6 Correct 6 ms 10248 KB Output is correct
7 Correct 8 ms 10464 KB Output is correct
8 Correct 7 ms 10472 KB Output is correct
9 Correct 8 ms 10384 KB Output is correct
10 Correct 6 ms 10376 KB Output is correct
11 Correct 11 ms 10732 KB Output is correct
12 Correct 7 ms 10488 KB Output is correct
13 Correct 8 ms 10256 KB Output is correct
14 Correct 7 ms 10428 KB Output is correct
15 Correct 7 ms 10472 KB Output is correct
16 Correct 7 ms 10384 KB Output is correct
17 Correct 6 ms 10256 KB Output is correct
18 Correct 7 ms 10472 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 35 ms 14360 KB Output is correct
2 Correct 35 ms 14492 KB Output is correct
3 Correct 34 ms 14308 KB Output is correct
4 Correct 23 ms 12524 KB Output is correct
5 Correct 25 ms 13612 KB Output is correct
6 Correct 24 ms 13228 KB Output is correct
7 Correct 23 ms 13228 KB Output is correct
8 Correct 24 ms 13416 KB Output is correct
9 Correct 28 ms 13228 KB Output is correct
10 Correct 20 ms 12812 KB Output is correct
11 Correct 22 ms 12816 KB Output is correct
12 Correct 20 ms 12488 KB Output is correct
13 Correct 22 ms 12596 KB Output is correct
14 Correct 24 ms 12828 KB Output is correct
15 Correct 26 ms 12844 KB Output is correct
16 Correct 27 ms 13192 KB Output is correct
17 Correct 26 ms 12760 KB Output is correct
18 Correct 25 ms 12760 KB Output is correct
19 Correct 24 ms 12764 KB Output is correct
20 Correct 20 ms 13516 KB Output is correct
21 Correct 20 ms 13356 KB Output is correct
22 Correct 23 ms 12972 KB Output is correct
23 Correct 28 ms 13324 KB Output is correct
24 Correct 23 ms 12972 KB Output is correct
25 Correct 25 ms 13360 KB Output is correct
26 Correct 27 ms 13228 KB Output is correct
27 Correct 30 ms 13316 KB Output is correct
28 Correct 30 ms 13432 KB Output is correct
29 Correct 20 ms 12948 KB Output is correct
30 Correct 22 ms 13140 KB Output is correct
31 Correct 8 ms 10484 KB Output is correct
32 Correct 8 ms 10484 KB Output is correct
33 Correct 6 ms 10256 KB Output is correct
34 Correct 6 ms 10504 KB Output is correct
35 Correct 6 ms 10492 KB Output is correct
36 Correct 6 ms 10492 KB Output is correct
37 Correct 7 ms 10248 KB Output is correct
38 Correct 6 ms 10500 KB Output is correct
39 Correct 8 ms 10248 KB Output is correct
40 Correct 7 ms 10504 KB Output is correct
41 Correct 6 ms 10484 KB Output is correct
42 Correct 7 ms 10500 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 8 ms 10404 KB Output is correct
2 Correct 6 ms 10488 KB Output is correct
3 Correct 7 ms 10372 KB Output is correct
4 Correct 9 ms 10788 KB Output is correct
5 Correct 8 ms 10916 KB Output is correct
6 Correct 8 ms 11008 KB Output is correct
7 Correct 9 ms 11004 KB Output is correct
8 Correct 10 ms 11012 KB Output is correct
9 Correct 20 ms 14156 KB Output is correct
10 Correct 20 ms 14156 KB Output is correct
11 Correct 19 ms 14028 KB Output is correct
12 Correct 7 ms 10620 KB Output is correct
13 Correct 6 ms 10372 KB Output is correct
14 Correct 6 ms 10244 KB Output is correct
15 Correct 6 ms 10628 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 35 ms 14492 KB Output is correct
2 Correct 36 ms 14436 KB Output is correct
3 Correct 36 ms 14364 KB Output is correct
4 Correct 24 ms 12492 KB Output is correct
5 Correct 26 ms 13868 KB Output is correct
6 Correct 25 ms 13408 KB Output is correct
7 Correct 26 ms 13228 KB Output is correct
8 Correct 24 ms 13132 KB Output is correct
9 Correct 25 ms 13100 KB Output is correct
10 Correct 20 ms 12808 KB Output is correct
11 Correct 25 ms 12836 KB Output is correct
12 Correct 22 ms 12504 KB Output is correct
13 Correct 23 ms 12436 KB Output is correct
14 Correct 30 ms 12576 KB Output is correct
15 Correct 23 ms 13064 KB Output is correct
16 Correct 25 ms 13076 KB Output is correct
17 Correct 22 ms 12716 KB Output is correct
18 Correct 24 ms 12764 KB Output is correct
19 Correct 24 ms 12844 KB Output is correct
20 Correct 20 ms 13388 KB Output is correct
21 Correct 19 ms 13228 KB Output is correct
22 Correct 22 ms 13340 KB Output is correct
23 Correct 28 ms 13112 KB Output is correct
24 Correct 22 ms 13120 KB Output is correct
25 Correct 23 ms 13324 KB Output is correct
26 Correct 25 ms 13228 KB Output is correct
27 Correct 27 ms 13228 KB Output is correct
28 Correct 24 ms 13100 KB Output is correct
29 Correct 23 ms 13060 KB Output is correct
30 Correct 24 ms 13128 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 38 ms 14380 KB Output is correct
2 Correct 35 ms 14436 KB Output is correct
3 Correct 35 ms 14484 KB Output is correct
4 Correct 22 ms 12520 KB Output is correct
5 Correct 23 ms 14124 KB Output is correct
6 Correct 23 ms 13472 KB Output is correct
7 Correct 23 ms 12972 KB Output is correct
8 Correct 26 ms 13356 KB Output is correct
9 Correct 28 ms 13356 KB Output is correct
10 Correct 22 ms 12680 KB Output is correct
11 Correct 20 ms 12812 KB Output is correct
12 Correct 22 ms 12624 KB Output is correct
13 Correct 24 ms 12436 KB Output is correct
14 Correct 22 ms 12836 KB Output is correct
15 Correct 22 ms 13068 KB Output is correct
16 Correct 24 ms 13068 KB Output is correct
17 Correct 24 ms 12756 KB Output is correct
18 Correct 22 ms 12884 KB Output is correct
19 Correct 23 ms 12716 KB Output is correct
20 Correct 20 ms 13356 KB Output is correct
21 Correct 20 ms 13356 KB Output is correct
22 Correct 23 ms 13100 KB Output is correct
23 Correct 24 ms 13116 KB Output is correct
24 Correct 24 ms 13116 KB Output is correct
25 Correct 25 ms 13196 KB Output is correct
26 Correct 23 ms 13100 KB Output is correct
27 Correct 23 ms 13356 KB Output is correct
28 Correct 25 ms 13396 KB Output is correct
29 Correct 26 ms 13076 KB Output is correct
30 Correct 24 ms 13112 KB Output is correct
31 Correct 6 ms 10248 KB Output is correct
32 Correct 7 ms 10492 KB Output is correct
33 Correct 7 ms 10256 KB Output is correct
34 Correct 6 ms 10492 KB Output is correct
35 Correct 7 ms 10500 KB Output is correct
36 Correct 6 ms 10504 KB Output is correct
37 Correct 6 ms 10248 KB Output is correct
38 Correct 7 ms 10384 KB Output is correct
39 Correct 10 ms 10496 KB Output is correct
40 Correct 6 ms 10492 KB Output is correct
41 Correct 6 ms 10248 KB Output is correct
42 Correct 6 ms 10248 KB Output is correct