답안 #255933

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
255933 2020-08-02T06:00:43 Z IgorI Collapse (JOI18_collapse) C++17
100 / 100
13073 ms 40352 KB
#include <bits/stdc++.h>

#define all(x) (x).begin(), (x).end()

using namespace std;

typedef long long ll;

const int N = 302020;

int n;

int cuts[N];
int cutssz;
int root[N], sz[N];
int comp;

void Reset()
{
    for (int i = 0; i < n; i++) root[i] = i, sz[i] = 1;
    cutssz = 0;
    comp = n;
}

int Root(int x)
{
    if (x == root[x]) return root[x];
    return Root(root[x]);
}

void Merge(int v, int u)
{
    v = Root(v), u = Root(u);
    if (v == u) return;
    comp--;
    if (sz[v] < sz[u])
    {
        cuts[cutssz++] = v;
        sz[u] += sz[v];
        root[v] = u;
    }
    else
    {
        cuts[cutssz++] = u;
        sz[v] += sz[u];
        root[u] = v;
    }
}

void Cut()
{
    cutssz--;
    int x = cuts[cutssz];
    sz[root[x]] -= sz[x];
    root[x] = x;
    comp++;
}

int v[N], u[N], L[N], R[N], ans[N], z[N], it[N];

vector<pair<int, pair<int, int> > > on_left[N];
vector<pair<int, pair<int, int> > > on_right[N];

void solve(int le, int ri, int gap_le, int gap_ri)
{
    if (le + 1 == ri)
    {
        if (v[le] == -1)
        {
            int ss = cutssz;
            for (int i = gap_le + 1; i <= z[le]; i++)
            {
                for (auto e : on_left[i])
                {
                    if (e.second.first <= it[le] && it[le] < e.second.second)
                    {
                        Merge(e.first, i);
                    }
                }
            }
            for (int i = gap_ri - 1; i > z[le]; i--)
            {
                for (auto e : on_right[i])
                {
                    if (e.second.first <= it[le] && it[le] < e.second.second)
                    {
                        Merge(i, e.first);
                    }
                }
            }
            ans[le] = comp;
            while (cutssz != ss) Cut();
        }
        return;
    }
    int mi = (le + ri) / 2;
    int ss = cutssz;
    for (int i = le; i < mi; i++)
    {
        if (v[i] != -1 && R[i] != -1 && ri <= R[i]) Merge(v[i], u[i]);
    }
    solve(mi, ri, gap_le, gap_ri);
    while (cutssz != ss) Cut();
    for (int i = ri - 1; i >= mi; i--)
    {
        if (v[i] != -1 && L[i] != -1 && L[i] < le) Merge(v[i], u[i]);
    }
    solve(le, mi, gap_le, gap_ri);
    while (cutssz != ss) Cut();
}

void DCP(vector<int> x, vector<int> y, vector<pair<int, int> > &t, vector<int> p, int gap_le, int gap_ri)
{
    Reset();
    map<pair<int, int>, int> open;
    int T = 0;
    int j = 0;
    for (int i = 0; i < x.size(); i++)
    {
        if (y[i] <= gap_le || gap_ri <= x[i])
        {
            if (open.find({x[i], y[i]}) == open.end())
            {
                open[{x[i], y[i]}] = T;
                v[T] = x[i];
                u[T] = y[i];
                T++;
            }
            else
            {
                int z = open[{x[i], y[i]}];
                L[T] = z;
                L[z] = -1;
                R[T] = -1;
                R[z] = T;
                v[T] = x[i];
                u[T] = y[i];
                open.erase({x[i], y[i]});
                T++;
            }
        }
        while (j < t.size() && i == t[j].first)
        {
            v[T] = -1, u[T] = -1;
            it[T] = t[j].first;
            z[T] = p[j];
            T++;
            j++;
        }
    }
    solve(0, T, gap_le, gap_ri);
    j = 0;
    for (int i = 0; i < T; i++)
    {
        if (v[i] == -1)
        {
            t[j].first = ans[i];
            j++;
        }
    }
}

void solve_queries(int gap_le, int gap_ri, vector<int> x, vector<int> y, vector<int> w, vector<int> p, vector<int> &answer)
{
    vector<pair<int, int> > times;
    for (int i = 0; i < w.size(); i++)
    {
        if (gap_le <= p[i] && p[i] < gap_ri)
        {
            times.push_back({w[i], i});
        }
    }
    sort(times.begin(), times.end());
    vector<int> mp(times.size());
    for (int i = 0; i < times.size(); i++)
    {
        mp[i] = p[times[i].second];
    }
    if (times.size())
    DCP(x, y, times, mp, gap_le, gap_ri);
    for (int i = 0; i < times.size(); i++)
    {
        answer[times[i].second] = times[i].first;
    }
}

const int K = 2600;

vector<int> simulateCollapse(int n0, vector<int> t, vector<int> x, vector<int> y, vector<int> w, vector<int> p)
{
    n = n0;
    int c = t.size();
    int q = w.size();
    set<pair<int, int> > s;
    for (int i = 0; i < c; i++)
    {
        if (x[i] > y[i]) swap(x[i], y[i]);
        if (s.find({x[i], y[i]}) == s.end())
        {
            s.insert({x[i], y[i]});
        }
        else
        {
            s.erase({x[i], y[i]});
        }
    }
    while (s.size())
    {
        pair<int, int> d = *(s.begin());
        s.erase(s.begin());
        x.push_back(d.first);
        y.push_back(d.second);
        c++;
    }
    map<pair<int, int>, int> mm;
    for (int i = 0; i < c; i++)
    {
        if (mm.find({x[i], y[i]}) == mm.end())
        {
            mm[{x[i], y[i]}] = i;
        }
        else
        {
            int z = mm[{x[i], y[i]}];
            mm.erase({x[i], y[i]});
            on_left[y[i]].push_back({x[i], {z, i}});
            on_right[x[i]].push_back({y[i], {z, i}});
        }
    }
    vector<int> answer(q);
    vector<int> pleft(n);
    vector<int> pright(n);
    for (int i = 1; i < n; i++)
    {
        pleft[i] = pleft[i - 1] + on_left[i].size();
    }
    for (int i = n - 2; i >= 0; i--)
    {
        pright[i] = pright[i + 1] + on_right[i].size();
    }
    vector<pair<int, int> > e;
    int GL = 0;
    while (GL != n - 1)
    {
        int okay = GL + 1;
        for (int HF = GL + 1; HF < n; HF++)
        {
            if (pleft[HF - 1] - pleft[GL] <= K && pright[GL + 1] - pright[HF] <= K)
                okay = HF;
        }
        e.push_back({GL, okay});
        GL = okay;
    }
    assert(e.size() <= 80);
    for (auto ee : e)
    {
        solve_queries(ee.first, ee.second, x, y, w, p, answer);
    }
    return answer;
}

#ifdef LOCAL
int main()
{
    int n, c, q;
    cin >> n >> c >> q;
    vector<int> t(c), x(c), y(c), w(q), p(q);
    for (int i = 0; i < c; i++)
    {
        cin >> t[i] >> x[i] >> y[i];
    }
    for (int i = 0; i < q; i++)
    {
        cin >> w[i] >> p[i];
    }
    vector<int> ans = simulateCollapse(n, t, x, y, w, p);
    for (int i = 0; i < q; i++)
    {
        cout << ans[i] << "\n";
    }
}
#endif // LOCAL

Compilation message

collapse.cpp: In function 'void DCP(std::vector<int>, std::vector<int>, std::vector<std::pair<int, int> >&, std::vector<int>, int, int)':
collapse.cpp:118:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (int i = 0; i < x.size(); i++)
                     ~~^~~~~~~~~~
collapse.cpp:142:18: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
         while (j < t.size() && i == t[j].first)
                ~~^~~~~~~~~~
collapse.cpp: In function 'void solve_queries(int, int, std::vector<int>, std::vector<int>, std::vector<int>, std::vector<int>, std::vector<int>&)':
collapse.cpp:166:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (int i = 0; i < w.size(); i++)
                     ~~^~~~~~~~~~
collapse.cpp:175:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (int i = 0; i < times.size(); i++)
                     ~~^~~~~~~~~~~~~~
collapse.cpp:181:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (int i = 0; i < times.size(); i++)
                     ~~^~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 13 ms 15104 KB Output is correct
2 Correct 14 ms 14848 KB Output is correct
3 Correct 15 ms 14848 KB Output is correct
4 Correct 12 ms 14848 KB Output is correct
5 Correct 22 ms 15148 KB Output is correct
6 Correct 67 ms 15616 KB Output is correct
7 Correct 33 ms 14976 KB Output is correct
8 Correct 33 ms 14968 KB Output is correct
9 Correct 130 ms 15232 KB Output is correct
10 Correct 94 ms 15480 KB Output is correct
11 Correct 162 ms 15636 KB Output is correct
12 Correct 119 ms 15756 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 57 ms 20844 KB Output is correct
2 Correct 63 ms 20788 KB Output is correct
3 Correct 150 ms 28560 KB Output is correct
4 Correct 65 ms 20844 KB Output is correct
5 Correct 375 ms 28692 KB Output is correct
6 Correct 898 ms 22628 KB Output is correct
7 Correct 1097 ms 39752 KB Output is correct
8 Correct 861 ms 29128 KB Output is correct
9 Correct 8677 ms 22712 KB Output is correct
10 Correct 8479 ms 22624 KB Output is correct
11 Correct 10404 ms 22748 KB Output is correct
12 Correct 1920 ms 31240 KB Output is correct
13 Correct 5560 ms 34300 KB Output is correct
14 Correct 6023 ms 39084 KB Output is correct
15 Correct 4418 ms 38892 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 45 ms 20844 KB Output is correct
2 Correct 57 ms 20844 KB Output is correct
3 Correct 62 ms 20844 KB Output is correct
4 Correct 68 ms 20844 KB Output is correct
5 Correct 271 ms 20848 KB Output is correct
6 Correct 758 ms 20148 KB Output is correct
7 Correct 3374 ms 32480 KB Output is correct
8 Correct 6528 ms 37932 KB Output is correct
9 Correct 8861 ms 22332 KB Output is correct
10 Correct 13073 ms 22764 KB Output is correct
11 Correct 7956 ms 39776 KB Output is correct
12 Correct 11071 ms 40344 KB Output is correct
13 Correct 8233 ms 39844 KB Output is correct
14 Correct 10283 ms 40232 KB Output is correct
15 Correct 7733 ms 40180 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 13 ms 15104 KB Output is correct
2 Correct 14 ms 14848 KB Output is correct
3 Correct 15 ms 14848 KB Output is correct
4 Correct 12 ms 14848 KB Output is correct
5 Correct 22 ms 15148 KB Output is correct
6 Correct 67 ms 15616 KB Output is correct
7 Correct 33 ms 14976 KB Output is correct
8 Correct 33 ms 14968 KB Output is correct
9 Correct 130 ms 15232 KB Output is correct
10 Correct 94 ms 15480 KB Output is correct
11 Correct 162 ms 15636 KB Output is correct
12 Correct 119 ms 15756 KB Output is correct
13 Correct 57 ms 20844 KB Output is correct
14 Correct 63 ms 20788 KB Output is correct
15 Correct 150 ms 28560 KB Output is correct
16 Correct 65 ms 20844 KB Output is correct
17 Correct 375 ms 28692 KB Output is correct
18 Correct 898 ms 22628 KB Output is correct
19 Correct 1097 ms 39752 KB Output is correct
20 Correct 861 ms 29128 KB Output is correct
21 Correct 8677 ms 22712 KB Output is correct
22 Correct 8479 ms 22624 KB Output is correct
23 Correct 10404 ms 22748 KB Output is correct
24 Correct 1920 ms 31240 KB Output is correct
25 Correct 5560 ms 34300 KB Output is correct
26 Correct 6023 ms 39084 KB Output is correct
27 Correct 4418 ms 38892 KB Output is correct
28 Correct 45 ms 20844 KB Output is correct
29 Correct 57 ms 20844 KB Output is correct
30 Correct 62 ms 20844 KB Output is correct
31 Correct 68 ms 20844 KB Output is correct
32 Correct 271 ms 20848 KB Output is correct
33 Correct 758 ms 20148 KB Output is correct
34 Correct 3374 ms 32480 KB Output is correct
35 Correct 6528 ms 37932 KB Output is correct
36 Correct 8861 ms 22332 KB Output is correct
37 Correct 13073 ms 22764 KB Output is correct
38 Correct 7956 ms 39776 KB Output is correct
39 Correct 11071 ms 40344 KB Output is correct
40 Correct 8233 ms 39844 KB Output is correct
41 Correct 10283 ms 40232 KB Output is correct
42 Correct 7733 ms 40180 KB Output is correct
43 Correct 992 ms 26020 KB Output is correct
44 Correct 5303 ms 37484 KB Output is correct
45 Correct 1402 ms 26448 KB Output is correct
46 Correct 6515 ms 38048 KB Output is correct
47 Correct 9132 ms 22420 KB Output is correct
48 Correct 8445 ms 22336 KB Output is correct
49 Correct 11482 ms 22764 KB Output is correct
50 Correct 6178 ms 21496 KB Output is correct
51 Correct 2986 ms 28032 KB Output is correct
52 Correct 4732 ms 30584 KB Output is correct
53 Correct 3795 ms 30320 KB Output is correct
54 Correct 5910 ms 32992 KB Output is correct
55 Correct 5567 ms 32796 KB Output is correct
56 Correct 6023 ms 35108 KB Output is correct
57 Correct 6810 ms 37540 KB Output is correct
58 Correct 8987 ms 38044 KB Output is correct
59 Correct 6922 ms 40092 KB Output is correct
60 Correct 10764 ms 40352 KB Output is correct