Submission #249362

# Submission time Handle Problem Language Result Execution time Memory
249362 2020-07-14T16:50:15 Z SamAnd Koala Game (APIO17_koala) C++17
64 / 100
107 ms 2140 KB
#include "koala.h"
#include <bits/stdc++.h>
using namespace std;
#define m_p make_pair
#define all(x) (x).begin(),(x).end()
#define sz(x) ((int)(x).size())
#define fi first
#define se second
const int N = 102;

int n, w;

int minValue(int N, int W)
{
    // TODO: Implement Subtask 1 solution here.
    // You may leave this function unmodified if you are not attempting this
    // subtask.
    n = N;
    w = W;

    int* a;
    a = new int[n];
    for (int i = 0; i < n; ++i)
        a[i] = 0;

    a[0] = 1;

    int* b = new int[n];
    playRound(a, b);

    for (int i = 0; i < n; ++i)
    {
        if (b[i] == 0)
            return i;
    }
    return 0;
}

int maxValue(int N, int W)
{
    // TODO: Implement Subtask 2 solution here.
    // You may leave this function unmodified if you are not attempting this
    // subtask.
    n = N;
    w = W;

    vector<int> v;
    for (int i = 0; i < n; ++i)
        v.push_back(i);

    while (1)
    {
        if (sz(v) == 1)
            return v[0];

        int* a;
        a = new int[n];
        for (int i = 0; i < n; ++i)
            a[i] = 0;

        for (int i = 0; i < v.size(); ++i)
        {
            a[v[i]] = W / sz(v);
        }

        int* b;
        b = new int[n];
        playRound(a, b);

        vector<int> nv;
        for (int i = 0; i < v.size(); ++i)
        {
            if (b[v[i]] > a[v[i]])
                nv.push_back(v[i]);
        }
        v = nv;
    }
    return 0;
}

bool c[N];
vector<int> g[N];

bool dfs(int x, int y)
{
    if (c[x])
        return false;
    c[x] = true;
    if (x == y)
        return true;
    for (int i = 0; i < g[x].size(); ++i)
    {
        int h = g[x][i];
        if (dfs(h, y))
            return true;
    }
    return false;
}

bool so(int i, int j)
{
    if (i == j)
        return false;

    memset(c, false, sizeof c);
    if (dfs(i, j))
        return false;
    memset(c, false, sizeof c);
    if (dfs(j, i))
        return true;

    int l = 1;
    int r = 8;

    while (1)
    {
        int m = (l + r) / 2;

        int* a;
        a = new int[n];
        for (int i = 0; i < n; ++i)
            a[i] = 0;
        a[i] = a[j] = m;

        if (m * 2 > w)
        {
            r = m - 1;
            continue;
        }

        int* b;
        b = new int[n];
        playRound(a, b);

        if (b[i] > a[i] && b[j] <= a[j])
        {
            g[i].push_back(j);
            return false;
        }
        if (b[i] <= a[i] && b[j] > a[j])
        {
            g[j].push_back(i);
            return true;
        }

        if (b[i] <= a[i])
            r = m - 1;
        else
            l = m + 1;
    }
    assert(false);
}

int greaterValue(int N, int W)
{
    // TODO: Implement Subtask 3 solution here.
    // You may leave this function unmodified if you are not attempting this
    // subtask.
    for (int i = 0; i < n; ++i)
        g[i].clear();
    n = N;
    w = W;

    if (so(0, 1))
        return 1;
    return 0;
}

void allValues(int N, int W, int *P)
{
    for (int i = 0; i < n; ++i)
        g[i].clear();
    n = N;
    w = W;

    if (W == 2 * N)
    {
        // TODO: Implement Subtask 4 solution here.
        // You may leave this block unmodified if you are not attempting this
        // subtask.
        for (int i = 0; i < n; ++i)
            P[i] = 0;
        for (int x = n; x >= 1; --x)
        {
            vector<int> v;
            for (int i = 0; i < n; ++i)
            {
                if (P[i])
                    continue;
                v.push_back(i);
            }

            while (1)
            {
                if (sz(v) == 1)
                {
                    P[v[0]] = x;
                    break;
                }

                int* a;
                a = new int[n];
                for (int i = 0; i < n; ++i)
                    a[i] = 0;

                for (int i = 0; i < v.size(); ++i)
                {
                    a[v[i]] = W / sz(v);
                }

                int* b;
                b = new int[n];
                playRound(a, b);

                vector<int> nv;
                for (int i = 0; i < v.size(); ++i)
                {
                    if (b[v[i]] > a[v[i]])
                        nv.push_back(v[i]);
                }
                v = nv;
            }
        }
    }
    else
    {
        // TODO: Implement Subtask 5 solution here.
        // You may leave this block unmodified if you are not attempting this
        // subtask.
        int* a;
        a = new int[n];
        for (int i = 0; i < n; ++i)
            a[i] = i;
        sort(a, a + n, so);
        for (int i = 0; i < n; ++i)
            P[a[i]] = i + 1;
    }
}

Compilation message

koala.cpp: In function 'int maxValue(int, int)':
koala.cpp:61:27: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
         for (int i = 0; i < v.size(); ++i)
                         ~~^~~~~~~~~~
koala.cpp:71:27: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
         for (int i = 0; i < v.size(); ++i)
                         ~~^~~~~~~~~~
koala.cpp: In function 'bool dfs(int, int)':
koala.cpp:91:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (int i = 0; i < g[x].size(); ++i)
                     ~~^~~~~~~~~~~~~
koala.cpp: In function 'void allValues(int, int, int*)':
koala.cpp:206:35: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
                 for (int i = 0; i < v.size(); ++i)
                                 ~~^~~~~~~~~~
koala.cpp:216:35: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
                 for (int i = 0; i < v.size(); ++i)
                                 ~~^~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 6 ms 384 KB Output is correct
2 Correct 5 ms 384 KB Output is correct
3 Correct 6 ms 384 KB Output is correct
4 Correct 6 ms 384 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 18 ms 640 KB Output is correct
2 Correct 18 ms 640 KB Output is correct
3 Correct 18 ms 640 KB Output is correct
4 Correct 17 ms 640 KB Output is correct
# Verdict Execution time Memory Grader output
1 Partially correct 88 ms 1880 KB Output is partially correct
2 Partially correct 107 ms 2140 KB Output is partially correct
3 Partially correct 86 ms 1752 KB Output is partially correct
4 Partially correct 86 ms 1752 KB Output is partially correct
5 Partially correct 90 ms 1756 KB Output is partially correct
6 Partially correct 88 ms 1880 KB Output is partially correct
7 Partially correct 87 ms 1752 KB Output is partially correct
8 Partially correct 91 ms 1880 KB Output is partially correct
9 Partially correct 90 ms 1752 KB Output is partially correct
10 Partially correct 87 ms 1928 KB Output is partially correct
# Verdict Execution time Memory Grader output
1 Correct 52 ms 792 KB Output is correct
2 Correct 49 ms 876 KB Output is correct
3 Correct 50 ms 764 KB Output is correct
4 Correct 48 ms 760 KB Output is correct
5 Correct 48 ms 760 KB Output is correct
6 Correct 53 ms 888 KB Output is correct
7 Correct 48 ms 888 KB Output is correct
8 Correct 49 ms 760 KB Output is correct
9 Correct 48 ms 760 KB Output is correct
10 Correct 48 ms 764 KB Output is correct
11 Correct 48 ms 888 KB Output is correct
12 Correct 46 ms 888 KB Output is correct
13 Correct 48 ms 760 KB Output is correct
14 Correct 52 ms 804 KB Output is correct
15 Correct 53 ms 760 KB Output is correct
16 Correct 48 ms 760 KB Output is correct
17 Correct 51 ms 888 KB Output is correct
18 Correct 48 ms 760 KB Output is correct
19 Correct 50 ms 760 KB Output is correct
20 Correct 48 ms 888 KB Output is correct
# Verdict Execution time Memory Grader output
1 Partially correct 39 ms 1024 KB Output is partially correct
2 Partially correct 57 ms 1400 KB Output is partially correct
3 Partially correct 53 ms 1400 KB Output is partially correct
4 Partially correct 51 ms 1400 KB Output is partially correct
5 Partially correct 59 ms 1528 KB Output is partially correct
6 Partially correct 52 ms 1400 KB Output is partially correct
7 Partially correct 52 ms 1400 KB Output is partially correct
8 Partially correct 55 ms 1400 KB Output is partially correct
9 Partially correct 53 ms 1400 KB Output is partially correct
10 Partially correct 48 ms 1272 KB Output is partially correct
11 Partially correct 52 ms 1400 KB Output is partially correct
12 Partially correct 31 ms 1016 KB Output is partially correct
13 Partially correct 54 ms 1400 KB Output is partially correct
14 Partially correct 51 ms 1400 KB Output is partially correct
15 Partially correct 51 ms 1400 KB Output is partially correct
16 Partially correct 52 ms 1400 KB Output is partially correct
17 Partially correct 59 ms 1532 KB Output is partially correct
18 Partially correct 61 ms 1528 KB Output is partially correct
19 Partially correct 51 ms 1400 KB Output is partially correct
20 Partially correct 52 ms 1400 KB Output is partially correct
21 Partially correct 52 ms 1400 KB Output is partially correct
22 Partially correct 58 ms 1412 KB Output is partially correct
23 Partially correct 37 ms 1144 KB Output is partially correct
24 Partially correct 56 ms 1400 KB Output is partially correct
25 Partially correct 53 ms 1400 KB Output is partially correct
26 Partially correct 59 ms 1528 KB Output is partially correct
27 Partially correct 53 ms 1400 KB Output is partially correct
28 Partially correct 57 ms 1528 KB Output is partially correct
29 Partially correct 55 ms 1400 KB Output is partially correct
30 Partially correct 54 ms 1400 KB Output is partially correct
31 Partially correct 52 ms 1400 KB Output is partially correct
32 Partially correct 53 ms 1400 KB Output is partially correct
33 Partially correct 55 ms 1528 KB Output is partially correct
34 Partially correct 44 ms 1164 KB Output is partially correct
35 Partially correct 54 ms 1400 KB Output is partially correct
36 Partially correct 49 ms 1296 KB Output is partially correct
37 Partially correct 52 ms 1272 KB Output is partially correct
38 Partially correct 53 ms 1400 KB Output is partially correct
39 Partially correct 54 ms 1528 KB Output is partially correct
40 Partially correct 54 ms 1400 KB Output is partially correct