#include<bits/stdc++.h>
using namespace std;
//#include<ext/pb_ds/assoc_container.hpp>
//#include<ext/pb_ds/tree_policy.hpp>
//
// #pragma GCC optimize("unroll-loops")
// #pragma GCC optimize("Ofast")
// #pragma GCC optimize("-O3")
// #pragma GCC optimize("no-stack-protector")
// #pragma GCC optimize("fast-math")
//#define LOCAL
#define sim template < class c
#define ris return * this
#define dor > debug & operator <<
#define eni(x) sim > typename \
enable_if<sizeof dud<c>(0) x 1, debug&>::type operator<<(c i) {
sim > struct rge { c b, e; };
sim > rge<c> range(c i, c j) { return rge<c>{i, j}; }
sim > auto dud(c* x) -> decltype(cerr << *x, 0);
sim > char dud(...);
struct debug {
#ifndef LOCAL
~debug() { cerr << endl; }
eni(!=) cerr << boolalpha << i; ris; }
eni(==) ris << range(begin(i), end(i)); }
sim, class b dor(pair < b, c > d) {
ris << "(" << d.first << ", " << d.second << ")";
}
sim dor(rge<c> d) {
*this << "[";
for (auto it = d.b; it != d.e; ++it)
*this << ", " + 2 * (it == d.b) << *it;
ris << "]";
}
#else
sim dor(const c&) { ris; }
#endif
};
#define imie(...) " [" << #__VA_ARGS__ ": " << (__VA_ARGS__) << "] "
#define fi first
#define f first
#define se second
#define s second
#define vi_a vector<int>a;
#define p_b push_back
////////////////////////////////???????????????CHECK THIS OUT???????????????//////////////////////////////
#define ll long long
////////////////////////////////???????????????CHECK THIS OUT???????????????//////////////////////////////
#define ld long double
#define pll pair<ll,ll>
#define pii pair<int,int>
#define m_p make_pair
#define fast_io cin.tie(0);cout.tie(0);ios_base::sync_with_stdio(0);
#define all(x) x.begin(),x.end()
#define getfiles ifstream cin("input.txt");ofstream cout("output.txt");
#define pw(x) (1ll << x)
#define sz(x) (ll)x.size()
#define endl "\n"
#define rall(x) x.rbegin(),x.rend()
#define len(a) (ll)a.size()
#define rep(x,l,r) for(ll x=l;x<r;x++)
//using namespace __gnu_pbds;
ld eps = (ld)1 / 1e6;
const ld pi=3.14159265359;
ll inf = 1e18,mod1=1e9+7;
ll sqr(ll a) { return a * a; }
ll qb(ll a) { return a * a * a; }
ll gcd(ll a, ll b) { return !a ? b : gcd(b % a, a); }
ll binpow(ll a, ll b, ll mod) { return b ? (b % 2 ? (a * (sqr(binpow(a, b / 2, mod)) % mod)) % mod : sqr(binpow(a, b / 2, mod)) % mod) : 1; }
ll binmult(ll a, ll b, ll mod) { return b ? (b % 2 ? (2 * binmult(a, b / 2, mod) + a) % mod : (2 * binmult(a, b / 2, mod)) % mod) : 0; }
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
const ll R=1e4;
const ll tx[4]={0,0,-1,1};
const ll ty[4]={-1,1,0,0};
const char rev_to[4]={'E','W','N','S'};
const int N=1e2+1;
int a[N][N];
signed main(){
fast_io;
int n;
cin>>n;
if(n==2){
cout<<-1;exit(0);
}
if(n%2){
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
cout<<i*n+j<<' ';
}
cout<<endl;
}
exit(0);
}
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
if(j){
if(j==n-1){
a[i][j]=a[i][j-1]+n/2+1;
}
else{
a[i][j]=a[i][j-1]+1;
}
}
else{
if(i){
if(i!=n-1) a[i][j]=a[i-1][n-1]+1;
else a[i][j]=(a[1][0]-a[0][0])*(1+n/2)+a[i-1][j];
}
else{
a[i][j]=0;
}
}
}
}
for(int i=0;i<n;i++){
for(int j=0;j<n;j++) cout<<a[i][j]<<' ';
cout<<endl;
}
return 0;
}
///stuff you should look for :
/*
* int overflow, array bounds
* special cases (n=1?)
* do smth instead of nothing and stay organized
* read the conditions carefully
* WRITE STUFF DOWN
* если WA , то чекер говно, поэтому почекай l8 строчку
* бфс обновляем
* не дизморалимся и решаем контест полностью , если не получается с таской, передыхаем или переходим к некст
*/
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
5 ms |
384 KB |
Output is correct |
2 |
Correct |
5 ms |
432 KB |
Output is correct |
3 |
Correct |
5 ms |
384 KB |
Output is correct |
4 |
Correct |
4 ms |
384 KB |
Output is correct |
5 |
Correct |
5 ms |
384 KB |
Output is correct |
6 |
Correct |
6 ms |
384 KB |
Output is correct |
7 |
Correct |
6 ms |
436 KB |
Output is correct |
8 |
Correct |
6 ms |
512 KB |
Output is correct |
9 |
Correct |
5 ms |
384 KB |
Output is correct |
10 |
Correct |
6 ms |
512 KB |
Output is correct |