답안 #244207

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
244207 2020-07-02T20:40:56 Z rqi 동기화 (JOI13_synchronization) C++14
100 / 100
204 ms 9592 KB
#include <bits/stdc++.h>
using namespace std;
 
typedef long long ll;
typedef long double ld;
typedef double db; 
typedef string str; 

typedef pair<int,int> pi;
typedef pair<ll,ll> pl; 
typedef pair<db,db> pd; 

typedef vector<int> vi; 
typedef vector<ll> vl; 
typedef vector<db> vd; 
typedef vector<str> vs; 
typedef vector<pi> vpi;
typedef vector<pl> vpl; 
typedef vector<pd> vpd; 

#define mp make_pair
#define f first
#define s second
#define sz(x) (int)x.size()
#define all(x) begin(x), end(x)
#define rall(x) (x).rbegin(), (x).rend() 
#define rsz resize
#define ins insert 
#define ft front() 
#define bk back()
#define pf push_front 
#define pb push_back
#define eb emplace_back 
#define lb lower_bound 
#define ub upper_bound 

#define FOR(i,a,b) for (int i = (a); i < (b); ++i)
#define F0R(i,a) FOR(i,0,a)
#define ROF(i,a,b) for (int i = (b)-1; i >= (a); --i)
#define R0F(i,a) ROF(i,0,a)
#define trav(a,x) for (auto& a: x)

const int MOD = 1e9+7; // 998244353;
const int MX = 2e5+5; 
const ll INF = 1e18; 
const ld PI = acos((ld)-1);
const int xd[4] = {1,0,-1,0}, yd[4] = {0,1,0,-1}; 
mt19937 rng((uint32_t)chrono::steady_clock::now().time_since_epoch().count()); 

template<class T> bool ckmin(T& a, const T& b) { 
    return b < a ? a = b, 1 : 0; }
template<class T> bool ckmax(T& a, const T& b) { 
    return a < b ? a = b, 1 : 0; } 
int pct(int x) { return __builtin_popcount(x); } 
int bits(int x) { return 31-__builtin_clz(x); } // floor(log2(x)) 
int cdiv(int a, int b) { return a/b+!(a<0||a%b == 0); } // division of a by b rounded up, assumes b > 0 
int fstTrue(function<bool(int)> f, int lo, int hi) {
    hi ++; assert(lo <= hi); // assuming f is increasing
    while (lo < hi) { // find first index such that f is true 
        int mid = (lo+hi)/2; 
        f(mid) ? hi = mid : lo = mid+1; 
    } 
    return lo;
}

// INPUT
template<class A> void re(complex<A>& c);
template<class A, class B> void re(pair<A,B>& p);
template<class A> void re(vector<A>& v);
template<class A, size_t SZ> void re(array<A,SZ>& a);

template<class T> void re(T& x) { cin >> x; }
void re(db& d) { str t; re(t); d = stod(t); }
void re(ld& d) { str t; re(t); d = stold(t); }
template<class H, class... T> void re(H& h, T&... t) { re(h); re(t...); }

template<class A> void re(complex<A>& c) { A a,b; re(a,b); c = {a,b}; }
template<class A, class B> void re(pair<A,B>& p) { re(p.f,p.s); }
template<class A> void re(vector<A>& x) { trav(a,x) re(a); }
template<class A, size_t SZ> void re(array<A,SZ>& x) { trav(a,x) re(a); }

// TO_STRING
#define ts to_string
str ts(char c) { return str(1,c); }
str ts(bool b) { return b ? "true" : "false"; }
str ts(const char* s) { return (str)s; }
str ts(str s) { return s; }
template<class A> str ts(complex<A> c) { 
    stringstream ss; ss << c; return ss.str(); }
str ts(vector<bool> v) { 
    str res = "{"; F0R(i,sz(v)) res += char('0'+v[i]);
    res += "}"; return res; }
template<size_t SZ> str ts(bitset<SZ> b) {
    str res = ""; F0R(i,SZ) res += char('0'+b[i]);
    return res; }
template<class A, class B> str ts(pair<A,B> p);
template<class T> str ts(T v) { // containers with begin(), end()
    bool fst = 1; str res = "{";
    for (const auto& x: v) {
        if (!fst) res += ", ";
        fst = 0; res += ts(x);
    }
    res += "}"; return res;
}
template<class A, class B> str ts(pair<A,B> p) {
    return "("+ts(p.f)+", "+ts(p.s)+")"; }

// OUTPUT
template<class A> void pr(A x) { cout << ts(x); }
template<class H, class... T> void pr(const H& h, const T&... t) { 
    pr(h); pr(t...); }
void ps() { pr("\n"); } // print w/ spaces
template<class H, class... T> void ps(const H& h, const T&... t) { 
    pr(h); if (sizeof...(t)) pr(" "); ps(t...); }

// DEBUG
void DBG() { cerr << "]" << endl; }
template<class H, class... T> void DBG(H h, T... t) {
    cerr << ts(h); if (sizeof...(t)) cerr << ", ";
    DBG(t...); }
#ifdef LOCAL // compile with -DLOCAL
#define dbg(...) cerr << "LINE(" << __LINE__ << ") -> [" << #__VA_ARGS__ << "]: [", DBG(__VA_ARGS__)
#else
#define dbg(...) 0
#endif

// FILE I/O
void setIn(string s) { freopen(s.c_str(),"r",stdin); }
void setOut(string s) { freopen(s.c_str(),"w",stdout); }
void unsyncIO() { ios_base::sync_with_stdio(0); cin.tie(0); }
void setIO(string s = "") {
    unsyncIO();
    // cin.exceptions(cin.failbit); 
    // throws exception when do smth illegal
    // ex. try to read letter into int
    if (sz(s)) { setIn(s+".in"), setOut(s+".out"); } // for USACO
}

/**
 * Description: Link-Cut Tree. Given a function $f(1\ldots N)\to 1\ldots N,$ 
     * evaluates $f^b(a)$ for any $a,b.$ \texttt{sz} is for path queries; 
     * \texttt{sub}, \texttt{vsub} are for subtree queries. \texttt{x->access()} 
     * brings \texttt{x} to the top and propagates it; its left subtree will be 
     * the path from \texttt{x} to the root and its right subtree will be empty. 
     * Then \texttt{sub} will be the number of nodes in the connected component
     * of \texttt{x} and \texttt{vsub} will be the number of nodes under \texttt{x}.
     * Use \texttt{makeRoot} for arbitrary path queries.
 * Time: O(\log N)
 * Usage: FOR(i,1,N+1)LCT[i]=new snode(i); link(LCT[1],LCT[2],1);
 * Source: Dhruv Rohatgi, Eric Zhang
    * https://sites.google.com/site/kc97ble/container/splay-tree/splaytree-cpp-3
    * https://codeforces.com/blog/entry/67637
 * Verification: (see README for links)
    * ekzhang Balanced Tokens
    * Dynamic Tree Test (Easy)
    * https://probgate.org/viewproblem.php?pid=578 (The Applicant)
 */

typedef struct snode* sn;
struct snode { //////// VARIABLES
    sn p, c[2]; // parent, children
    sn extra; // extra cycle node for "The Applicant"
    bool flip = 0; // subtree flipped or not
    int val, sz; // value in node, # nodes in current splay tree
    int sub, vsub = 0; // vsub stores sum of virtual children
    snode(int _val) : val(_val) {
        p = c[0] = c[1] = extra = NULL; calc(); }
    friend int getSz(sn x) { return x?x->sz:0; }
    friend int getSub(sn x) { return x?x->sub:0; }
    void prop() { // lazy prop
        if (!flip) return;
        swap(c[0],c[1]); flip = 0;
        F0R(i,2) if (c[i]) c[i]->flip ^= 1;
    }
    void calc() { // recalc vals
        F0R(i,2) if (c[i]) c[i]->prop();
        sz = 1+getSz(c[0])+getSz(c[1]);
        sub = 1+getSub(c[0])+getSub(c[1])+vsub;
    }
    //////// SPLAY TREE OPERATIONS
    int dir() {
        if (!p) return -2;
        F0R(i,2) if (p->c[i] == this) return i;
        return -1; // p is path-parent pointer
    } // -> not in current splay tree
    // test if root of current splay tree
    bool isRoot() { return dir() < 0; } 
    friend void setLink(sn x, sn y, int d) {
        if (y) y->p = x;
        if (d >= 0) x->c[d] = y; }
    void rot() { // assume p and p->p propagated
        assert(!isRoot()); int x = dir(); sn pa = p;
        setLink(pa->p, this, pa->dir());
        setLink(pa, c[x^1], x); setLink(this, pa, x^1);
        pa->calc(); calc();
    }
    void splay() {
        while (!isRoot() && !p->isRoot()) {
            p->p->prop(), p->prop(), prop();
            dir() == p->dir() ? p->rot() : rot();
            rot();
        }
        if (!isRoot()) p->prop(), prop(), rot();
        prop();
    }
    sn fbo(int b) { // find by order
        prop(); int z = getSz(c[0]); // of splay tree
        if (b == z) { splay(); return this; }
        return b < z ? c[0]->fbo(b) : c[1] -> fbo(b-z-1);
    }
    //////// BASE OPERATIONS
    void access() { // bring this to top of tree, propagate
        for (sn v = this, pre = NULL; v; v = v->p) {
            v->splay(); // now switch virtual children
            if (pre) v->vsub -= pre->sub;
            if (v->c[1]) v->vsub += v->c[1]->sub;
            v->c[1] = pre; v->calc(); pre = v;
        }
        splay(); assert(!c[1]); // right subtree is empty
    }
    void makeRoot() { 
        access(); flip ^= 1; access(); assert(!c[0] && !c[1]); }
    //////// QUERIES
    friend sn lca(sn x, sn y) {
        if (x == y) return x;
        x->access(), y->access(); if (!x->p) return NULL;
        x->splay(); return x->p?:x; // y was below x in latter case
    } // access at y did not affect x -> not connected
    friend bool connected(sn x, sn y) { return lca(x,y); } 
    // # nodes above
    int distRoot() { access(); return getSz(c[0]); } 
    sn getRoot() { // get root of LCT component
        access(); sn a = this; 
        while (a->c[0]) a = a->c[0], a->prop();
        a->access(); return a;
    }
    sn getPar(int b) { // get b-th parent on path to root
        access(); b = getSz(c[0])-b; assert(b >= 0);
        return fbo(b);
    } // can also get min, max on path to root, etc
    //////// MODIFICATIONS
    void set(int v) { access(); val = v; calc(); } 
    friend void link(sn x, sn y, bool force = 0) { 
        assert(!connected(x,y)); 
        if (force) y->makeRoot(); // make x par of y
        else { y->access(); assert(!y->c[0]); }
        x->access(); setLink(y,x,0); y->calc();
    }
    friend void cut(sn y) { // cut y from its parent
        y->access(); assert(y->c[0]);
        y->c[0]->p = NULL; y->c[0] = NULL; y->calc(); }
    friend void cut(sn x, sn y) { // if x, y adj in tree
        y->access();
        if(y->c[0] != x){
            cut(y, x);
            return;
        }
        cut(y); }
};

int N, M, Q;
sn LCT[MX];
bool on[MX];
int sum[MX];
int X[MX];
int Y[MX];
int ans[MX];

int main() {
    setIO();
    
    cin >> N >> M >> Q;
    for(int i = 1; i <= N-1; i++){
        cin >> X[i] >> Y[i];
    }

    for(int i = 1; i <= N; i++){
        LCT[i] = new snode(1);
    }

    for(int i = 1; i <= M; i++){
        int D;
        cin >> D;
        on[D]^=1;
        if(on[D]){ //turn on
            sn a = LCT[X[D]];
            sn b = LCT[Y[D]];
            a = a->getRoot();
            b = b->getRoot();
            int num1 = a->val;
            int num2 = b->val;
            int num3 = sum[D];
            int num = num1+num2-num3;
            link(LCT[X[D]], LCT[Y[D]]);
            (a->getRoot())->val = num;
        }   
        else{ //turn off
            sn a = LCT[X[D]];
            sn b = LCT[Y[D]];
            int num = (a->getRoot())->val;
            cut(a, b);
            sum[D] = num;
            (a->getRoot())->val = num;
            (b->getRoot())->val = num;
        }
    }

    for(int i = 1; i <= N; i++){
        ans[i] = (LCT[i]->getRoot())->val;
    }

    for(int i = 1; i <= Q; i++){
        int C;
        cin >> C;
        ps(ans[C]);
    }

    // you should actually read the stuff at the bottom
}

/* stuff you should look for
    * int overflow, array bounds
    * special cases (n=1?)
    * do smth instead of nothing and stay organized
    * WRITE STUFF DOWN
*/

Compilation message

synchronization.cpp: In function 'void setIn(std::__cxx11::string)':
synchronization.cpp:128:31: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
 void setIn(string s) { freopen(s.c_str(),"r",stdin); }
                        ~~~~~~~^~~~~~~~~~~~~~~~~~~~~
synchronization.cpp: In function 'void setOut(std::__cxx11::string)':
synchronization.cpp:129:32: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
 void setOut(string s) { freopen(s.c_str(),"w",stdout); }
                         ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 5 ms 384 KB Output is correct
2 Correct 5 ms 384 KB Output is correct
3 Correct 5 ms 384 KB Output is correct
4 Correct 5 ms 384 KB Output is correct
5 Correct 4 ms 384 KB Output is correct
6 Correct 5 ms 512 KB Output is correct
7 Correct 14 ms 1280 KB Output is correct
8 Correct 17 ms 1280 KB Output is correct
9 Correct 14 ms 1152 KB Output is correct
10 Correct 156 ms 9080 KB Output is correct
11 Correct 153 ms 9080 KB Output is correct
12 Correct 133 ms 9124 KB Output is correct
13 Correct 123 ms 9208 KB Output is correct
14 Correct 174 ms 8696 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 115 ms 8824 KB Output is correct
2 Correct 108 ms 8700 KB Output is correct
3 Correct 89 ms 8696 KB Output is correct
4 Correct 89 ms 8696 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 4 ms 384 KB Output is correct
2 Correct 5 ms 384 KB Output is correct
3 Correct 5 ms 384 KB Output is correct
4 Correct 5 ms 384 KB Output is correct
5 Correct 5 ms 384 KB Output is correct
6 Correct 7 ms 512 KB Output is correct
7 Correct 16 ms 1280 KB Output is correct
8 Correct 171 ms 9336 KB Output is correct
9 Correct 168 ms 9336 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 163 ms 9336 KB Output is correct
2 Correct 122 ms 9336 KB Output is correct
3 Correct 118 ms 9336 KB Output is correct
4 Correct 121 ms 9464 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 5 ms 384 KB Output is correct
2 Correct 5 ms 384 KB Output is correct
3 Correct 5 ms 384 KB Output is correct
4 Correct 5 ms 384 KB Output is correct
5 Correct 6 ms 512 KB Output is correct
6 Correct 17 ms 1280 KB Output is correct
7 Correct 183 ms 9336 KB Output is correct
8 Correct 171 ms 9336 KB Output is correct
9 Correct 136 ms 9592 KB Output is correct
10 Correct 204 ms 9336 KB Output is correct
11 Correct 141 ms 9464 KB Output is correct
12 Correct 138 ms 9464 KB Output is correct
13 Correct 123 ms 9336 KB Output is correct