답안 #241640

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
241640 2020-06-24T22:12:06 Z rqi Skyscraper (JOI16_skyscraper) C++14
100 / 100
272 ms 3840 KB
#include <bits/stdc++.h>
using namespace std;
 
typedef long long ll;
typedef long double ld;
typedef double db; 
typedef string str; 

typedef pair<int,int> pi;
typedef pair<ll,ll> pl; 
typedef pair<db,db> pd; 

typedef vector<int> vi; 
typedef vector<ll> vl; 
typedef vector<db> vd; 
typedef vector<str> vs; 
typedef vector<pi> vpi;
typedef vector<pl> vpl; 
typedef vector<pd> vpd; 

#define mp make_pair
#define f first
#define s second
#define sz(x) (int)x.size()
#define all(x) begin(x), end(x)
#define rall(x) (x).rbegin(), (x).rend() 
#define rsz resize
#define ins insert 
#define ft front() 
#define bk back()
#define pf push_front 
#define pb push_back
#define eb emplace_back 
#define lb lower_bound 
#define ub upper_bound 

#define FOR(i,a,b) for (int i = (a); i < (b); ++i)
#define F0R(i,a) FOR(i,0,a)
#define ROF(i,a,b) for (int i = (b)-1; i >= (a); --i)
#define R0F(i,a) ROF(i,0,a)
#define trav(a,x) for (auto& a: x)

const int MOD = 1e9+7; // 998244353;
const int MX = 2e5+5; 
const ll INF = 1e18; 
const ld PI = acos((ld)-1);
const int xd[4] = {1,0,-1,0}, yd[4] = {0,1,0,-1}; 
mt19937 rng((uint32_t)chrono::steady_clock::now().time_since_epoch().count()); 

template<class T> bool ckmin(T& a, const T& b) { 
    return b < a ? a = b, 1 : 0; }
template<class T> bool ckmax(T& a, const T& b) { 
    return a < b ? a = b, 1 : 0; } 
int pct(int x) { return __builtin_popcount(x); } 
int bits(int x) { return 31-__builtin_clz(x); } // floor(log2(x)) 
int cdiv(int a, int b) { return a/b+!(a<0||a%b == 0); } // division of a by b rounded up, assumes b > 0 
int fstTrue(function<bool(int)> f, int lo, int hi) {
    hi ++; assert(lo <= hi); // assuming f is increasing
    while (lo < hi) { // find first index such that f is true 
        int mid = (lo+hi)/2; 
        f(mid) ? hi = mid : lo = mid+1; 
    } 
    return lo;
}

// INPUT
template<class A> void re(complex<A>& c);
template<class A, class B> void re(pair<A,B>& p);
template<class A> void re(vector<A>& v);
template<class A, size_t SZ> void re(array<A,SZ>& a);

template<class T> void re(T& x) { cin >> x; }
void re(db& d) { str t; re(t); d = stod(t); }
void re(ld& d) { str t; re(t); d = stold(t); }
template<class H, class... T> void re(H& h, T&... t) { re(h); re(t...); }

template<class A> void re(complex<A>& c) { A a,b; re(a,b); c = {a,b}; }
template<class A, class B> void re(pair<A,B>& p) { re(p.f,p.s); }
template<class A> void re(vector<A>& x) { trav(a,x) re(a); }
template<class A, size_t SZ> void re(array<A,SZ>& x) { trav(a,x) re(a); }

// TO_STRING
#define ts to_string
str ts(char c) { return str(1,c); }
str ts(bool b) { return b ? "true" : "false"; }
str ts(const char* s) { return (str)s; }
str ts(str s) { return s; }
template<class A> str ts(complex<A> c) { 
    stringstream ss; ss << c; return ss.str(); }
str ts(vector<bool> v) { 
    str res = "{"; F0R(i,sz(v)) res += char('0'+v[i]);
    res += "}"; return res; }
template<size_t SZ> str ts(bitset<SZ> b) {
    str res = ""; F0R(i,SZ) res += char('0'+b[i]);
    return res; }
template<class A, class B> str ts(pair<A,B> p);
template<class T> str ts(T v) { // containers with begin(), end()
    bool fst = 1; str res = "{";
    for (const auto& x: v) {
        if (!fst) res += ", ";
        fst = 0; res += ts(x);
    }
    res += "}"; return res;
}
template<class A, class B> str ts(pair<A,B> p) {
    return "("+ts(p.f)+", "+ts(p.s)+")"; }

// OUTPUT
template<class A> void pr(A x) { cout << ts(x); }
template<class H, class... T> void pr(const H& h, const T&... t) { 
    pr(h); pr(t...); }
void ps() { pr("\n"); } // print w/ spaces
template<class H, class... T> void ps(const H& h, const T&... t) { 
    pr(h); if (sizeof...(t)) pr(" "); ps(t...); }

// DEBUG
void DBG() { cerr << "]" << endl; }
template<class H, class... T> void DBG(H h, T... t) {
    cerr << ts(h); if (sizeof...(t)) cerr << ", ";
    DBG(t...); }
#ifdef LOCAL // compile with -DLOCAL
#define dbg(...) cerr << "LINE(" << __LINE__ << ") -> [" << #__VA_ARGS__ << "]: [", DBG(__VA_ARGS__)
#else
#define dbg(...) 0
#endif

// FILE I/O
void setIn(string s) { freopen(s.c_str(),"r",stdin); }
void setOut(string s) { freopen(s.c_str(),"w",stdout); }
void unsyncIO() { ios_base::sync_with_stdio(0); cin.tie(0); }
void setIO(string s = "") {
    unsyncIO();
    // cin.exceptions(cin.failbit); 
    // throws exception when do smth illegal
    // ex. try to read letter into int
    if (sz(s)) { setIn(s+".in"), setOut(s+".out"); } // for USACO
}

/**
 * Description: modular arithmetic operations 
 * Source: 
    * KACTL
    * https://codeforces.com/blog/entry/63903
    * https://codeforces.com/contest/1261/submission/65632855 (tourist)
    * https://codeforces.com/contest/1264/submission/66344993 (ksun)
 * Verification: 
    * https://open.kattis.com/problems/modulararithmetic
 */

struct mi {
    typedef decay<decltype(MOD)>::type T; 
     /// don't silently convert to T
    T v; explicit operator T() const { return v; }
    mi() { v = 0; }
    mi(ll _v) { 
        v = (-MOD < _v && _v < MOD) ? _v : _v % MOD;
        if (v < 0) v += MOD;
    }
    friend bool operator==(const mi& a, const mi& b) { 
        return a.v == b.v; }
    friend bool operator!=(const mi& a, const mi& b) { 
        return !(a == b); }
    friend bool operator<(const mi& a, const mi& b) { 
        return a.v < b.v; }
    friend void re(mi& a) { ll x; re(x); a = mi(x); }
    friend str ts(mi a) { return ts(a.v); }
   
    mi& operator+=(const mi& m) { 
        if ((v += m.v) >= MOD) v -= MOD; 
        return *this; }
    mi& operator-=(const mi& m) { 
        if ((v -= m.v) < 0) v += MOD; 
        return *this; }
    mi& operator*=(const mi& m) { 
        v = (ll)v*m.v%MOD; return *this; }
    mi& operator/=(const mi& m) { return (*this) *= inv(m); }
    friend mi pow(mi a, ll p) {
        mi ans = 1; assert(p >= 0);
        for (; p; p /= 2, a *= a) if (p&1) ans *= a;
        return ans;
    }
    friend mi inv(const mi& a) { assert(a.v != 0); 
        return pow(a,MOD-2); }
        
    mi operator-() const { return mi(-v); }
    mi& operator++() { return *this += 1; }
    mi& operator--() { return *this -= 1; }
    friend mi operator+(mi a, const mi& b) { return a += b; }
    friend mi operator-(mi a, const mi& b) { return a -= b; }
    friend mi operator*(mi a, const mi& b) { return a *= b; }
    friend mi operator/(mi a, const mi& b) { return a /= b; }
};
typedef vector<mi> vmi;
typedef pair<mi,mi> pmi;
typedef vector<pmi> vpmi;

vector<vmi> scmb; // small combinations
void genComb(int SZ) {
    scmb.assign(SZ,vmi(SZ)); scmb[0][0] = 1;
    FOR(i,1,SZ) F0R(j,i+1) 
        scmb[i][j] = scmb[i-1][j]+(j?scmb[i-1][j-1]:0);
}

/**
 * Description: pre-compute factorial mod inverses,
     * assumes $MOD$ is prime and $SZ < MOD$.
 * Time: O(SZ)
 * Source: KACTL
 * Verification: https://dmoj.ca/problem/tle17c4p5
 */

vi invs, fac, ifac;
void genFac(int SZ) {
    invs.rsz(SZ), fac.rsz(SZ), ifac.rsz(SZ); 
    invs[1] = fac[0] = ifac[0] = 1; 
    FOR(i,2,SZ) invs[i] = MOD-(ll)MOD/i*invs[MOD%i]%MOD;
    FOR(i,1,SZ) {
        fac[i] = (ll)fac[i-1]*i%MOD;
        ifac[i] = (ll)ifac[i-1]*invs[i]%MOD;
    }
}

mi comb(int a, int b) {
    if (a < b || b < 0) return 0;
    return mi((ll)fac[a]*ifac[b]%MOD*ifac[a-b]%MOD);
}



int N, L;
int A[105];
mi dp[2][2][105][1005]; //number of components, total weight so far
mi ndp[2][2][105][1005]; 

void update(int s1, int s2, int j, int newval, mi ways){
    //dbg(s1, s2, j, newval, ways);
    if(s1 > 1) return;
    if(s2 > 1) return;
    if(j < 0) return;
    if(newval > L){
        //if(ways != 0) dbg(s1, s2, j, newval, ways);
        return;
    }
    if(newval < 0) return;
    if(ways != mi(0)) assert(newval >= 0);
    ndp[s1][s2][j][newval]+=ways;
}

void transition(int i, int s1, int s2, int j, int k){

    //dbg(i, s1, s2, j, k);

    mi ways = dp[s1][s2][j][k];
    if(ways == 0) return;
    int newval = k-A[i]*(s1+s2+2*(j));
    // if(i == 2 && s1 == 1 && s2 == 0 && j == 0 && k == 1){
    //     dbg(newval, ways);
    //     dbg(newval-A[i+1]+A[i+1]*(s1+s2+1+j-1));
    // }
    // if(i == 2 && s1 == 0 && s2 == 1 && j == 0 && k == 1){
    //     dbg(newval, ways);
    //     dbg(newval-A[i+1]+A[i+1]*(s1+1+s2+2*(j)));
    // }
    //start a new middle component
    update(s1, s2, j+1, newval-2*A[i+1]+A[i+1]*(s1+s2+2*(j+1)), ways);
    //add to an existing middle component
    update(s1, s2, j, newval+A[i+1]*(s1+s2+2*(j)), ways*j*2);
    //join together two middle components
    update(s1, s2, j-1, newval+2*A[i+1]+A[i+1]*(s1+s2+2*(j-1)), ways*comb(j, 2)*2);
    //join left and middle components
    if(s1 == 1) update(s1, s2, j-1, newval+2*A[i+1]+A[i+1]*(s1+s2+2*(j-1)), ways*j);
    //join middle and right components
    if(s2 == 1) update(s1, s2, j-1, newval+2*A[i+1]+A[i+1]*(s1+s2+2*(j-1)), ways*j);
    //add to an existing left component
    if(s1 == 1) update(s1, s2, j, newval+A[i+1]*(s1+s2+2*(j)), ways);
    //add to an existing right component
    if(s2 == 1) update(s1, s2, j, newval+A[i+1]*(s1+s2+2*(j)), ways);
    //start a left component
    update(s1+1, s2, j, newval-A[i+1]+A[i+1]*(s1+1+s2+2*(j)), ways);
    //start a right component
    update(s1, s2+1, j, newval-A[i+1]+A[i+1]*(s1+s2+1+2*(j)), ways);
    //transform a middle component into a left component
    update(s1+1, s2, j-1, newval+A[i+1]+A[i+1]*(s1+1+s2+2*(j-1)), ways*j);
    //transform a middle component into a right component
    update(s1, s2+1, j-1, newval+A[i+1]+A[i+1]*(s1+s2+1+2*(j-1)), ways*j);
}

int main() {
    setIO();
    cin >> N >> L;
    genFac(205);
    if(N == 1){
        ps(1);
        return 0;
    }
    for(int i = 1; i <= N; i++){
        cin >> A[i];
    }
    sort(A+1, A+1+N);

    dp[1][0][0][0] = 1;
    dp[0][1][0][0] = 1;
    dp[0][0][1][0] = 1;

    for(int i = 1; i+1 <= N-1; i++){ //place i+1th building
        for(int s1 = 0; s1 < 2; s1++){ //left present
            for(int s2 = 0; s2 < 2; s2++){ // right present 
                for(int j = 0; j <= N; j++){  //middle components
                    for(int k = 0; k <= L; k++){ //current weight
                        transition(i, s1, s2, j, k);
                    }
                } 
            }
        }

        //move to dp, reset ndp

        for(int s1 = 0; s1 < 2; s1++){ //left present
            for(int s2 = 0; s2 < 2; s2++){ // right present 
                for(int j = 0; j <= N; j++){  //middle components
                    for(int k = 0; k <= L; k++){ //current weight
                        dp[s1][s2][j][k] = ndp[s1][s2][j][k];
                        ndp[s1][s2][j][k] = 0;
                    }
                } 
            }
        }

        // if(i+1 == 2){
        //     dbg(dp[1][0][0][1]);
        //     dbg(dp[0][1][0][1]);
        // }
    }

    //dbg(dp[1][1][0][4]);
    mi ans = 0;
    //for answer, we could put N on the sides or the middle
    for(int k = 0; k <= L; k++){
        int newval = k-A[N-1]+A[N];
        mi ways = dp[0][1][0][k]; //N on the left
        if(newval <= L){
            //if(ways != 0) dbg(k, ways, "Ans1");
            ans+=ways;
        }

        newval = k-A[N-1]+A[N];
        ways = dp[1][0][0][k]; //N on the right
        if(newval <= L){
            //if(ways != 0) dbg(k, ways, "Ans2");
            ans+=ways;
        }

        newval = k-2*A[N-1]+2*A[N];
        ways = dp[1][1][0][k];
        if(newval <= L){
            //if(ways != 0) dbg(k, ways, "Ans3");
            ans+=ways;
        }
    }
    ps(ans);

    // you should actually read the stuff at the bottom
}

/* stuff you should look for
    * int overflow, array bounds
    * special cases (n=1?)
    * do smth instead of nothing and stay organized
    * WRITE STUFF DOWN
*/

Compilation message

skyscraper.cpp: In function 'void setIn(std::__cxx11::string)':
skyscraper.cpp:128:31: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
 void setIn(string s) { freopen(s.c_str(),"r",stdin); }
                        ~~~~~~~^~~~~~~~~~~~~~~~~~~~~
skyscraper.cpp: In function 'void setOut(std::__cxx11::string)':
skyscraper.cpp:129:32: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
 void setOut(string s) { freopen(s.c_str(),"w",stdout); }
                         ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 7 ms 3584 KB Output is correct
2 Correct 6 ms 3712 KB Output is correct
3 Correct 6 ms 3584 KB Output is correct
4 Correct 6 ms 3584 KB Output is correct
5 Correct 8 ms 3584 KB Output is correct
6 Correct 7 ms 3584 KB Output is correct
7 Correct 7 ms 3584 KB Output is correct
8 Correct 7 ms 3584 KB Output is correct
9 Correct 8 ms 3712 KB Output is correct
10 Correct 8 ms 3712 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 7 ms 3712 KB Output is correct
2 Correct 7 ms 3712 KB Output is correct
3 Correct 7 ms 3584 KB Output is correct
4 Correct 7 ms 3584 KB Output is correct
5 Correct 8 ms 3584 KB Output is correct
6 Correct 7 ms 3584 KB Output is correct
7 Correct 7 ms 3584 KB Output is correct
8 Correct 7 ms 3584 KB Output is correct
9 Correct 8 ms 3712 KB Output is correct
10 Correct 7 ms 3584 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 7 ms 3584 KB Output is correct
2 Correct 6 ms 3712 KB Output is correct
3 Correct 6 ms 3584 KB Output is correct
4 Correct 6 ms 3584 KB Output is correct
5 Correct 8 ms 3584 KB Output is correct
6 Correct 7 ms 3584 KB Output is correct
7 Correct 7 ms 3584 KB Output is correct
8 Correct 7 ms 3584 KB Output is correct
9 Correct 8 ms 3712 KB Output is correct
10 Correct 8 ms 3712 KB Output is correct
11 Correct 7 ms 3712 KB Output is correct
12 Correct 7 ms 3712 KB Output is correct
13 Correct 7 ms 3584 KB Output is correct
14 Correct 7 ms 3584 KB Output is correct
15 Correct 8 ms 3584 KB Output is correct
16 Correct 7 ms 3584 KB Output is correct
17 Correct 7 ms 3584 KB Output is correct
18 Correct 7 ms 3584 KB Output is correct
19 Correct 8 ms 3712 KB Output is correct
20 Correct 7 ms 3584 KB Output is correct
21 Correct 9 ms 3840 KB Output is correct
22 Correct 272 ms 3704 KB Output is correct
23 Correct 235 ms 3708 KB Output is correct
24 Correct 215 ms 3584 KB Output is correct
25 Correct 249 ms 3584 KB Output is correct
26 Correct 217 ms 3584 KB Output is correct
27 Correct 91 ms 3584 KB Output is correct
28 Correct 119 ms 3712 KB Output is correct
29 Correct 213 ms 3704 KB Output is correct
30 Correct 249 ms 3584 KB Output is correct