답안 #240960

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
240960 2020-06-21T21:50:14 Z rqi Election Campaign (JOI15_election_campaign) C++14
100 / 100
451 ms 65256 KB
#include <bits/stdc++.h>
using namespace std;
 
typedef long long ll;
typedef long double ld;
typedef double db; 
typedef string str; 

typedef pair<int,int> pi;
typedef pair<ll,ll> pl; 
typedef pair<db,db> pd; 

typedef vector<int> vi; 
typedef vector<ll> vl; 
typedef vector<db> vd; 
typedef vector<str> vs; 
typedef vector<pi> vpi;
typedef vector<pl> vpl; 
typedef vector<pd> vpd; 

#define mp make_pair
#define f first
#define s second
#define sz(x) (int)x.size()
#define all(x) begin(x), end(x)
#define rall(x) (x).rbegin(), (x).rend() 
#define rsz resize
#define ins insert 
#define ft front() 
#define bk back()
#define pf push_front 
#define pb push_back
#define eb emplace_back 
#define lb lower_bound 
#define ub upper_bound 

#define FOR(i,a,b) for (int i = (a); i < (b); ++i)
#define F0R(i,a) FOR(i,0,a)
#define ROF(i,a,b) for (int i = (b)-1; i >= (a); --i)
#define R0F(i,a) ROF(i,0,a)
#define trav(a,x) for (auto& a: x)

const int MOD = 1e9+7; // 998244353;
const int MX = 2e5+5; 
const ll INF = 1e18; 
const ld PI = acos((ld)-1);
const int xd[4] = {1,0,-1,0}, yd[4] = {0,1,0,-1}; 
mt19937 rng((uint32_t)chrono::steady_clock::now().time_since_epoch().count()); 

template<class T> bool ckmin(T& a, const T& b) { 
    return b < a ? a = b, 1 : 0; }
template<class T> bool ckmax(T& a, const T& b) { 
    return a < b ? a = b, 1 : 0; } 
int pct(int x) { return __builtin_popcount(x); } 
int bits(int x) { return 31-__builtin_clz(x); } // floor(log2(x)) 
int cdiv(int a, int b) { return a/b+!(a<0||a%b == 0); } // division of a by b rounded up, assumes b > 0 
int fstTrue(function<bool(int)> f, int lo, int hi) {
    hi ++; assert(lo <= hi); // assuming f is increasing
    while (lo < hi) { // find first index such that f is true 
        int mid = (lo+hi)/2; 
        f(mid) ? hi = mid : lo = mid+1; 
    } 
    return lo;
}

// INPUT
template<class A> void re(complex<A>& c);
template<class A, class B> void re(pair<A,B>& p);
template<class A> void re(vector<A>& v);
template<class A, size_t SZ> void re(array<A,SZ>& a);

template<class T> void re(T& x) { cin >> x; }
void re(db& d) { str t; re(t); d = stod(t); }
void re(ld& d) { str t; re(t); d = stold(t); }
template<class H, class... T> void re(H& h, T&... t) { re(h); re(t...); }

template<class A> void re(complex<A>& c) { A a,b; re(a,b); c = {a,b}; }
template<class A, class B> void re(pair<A,B>& p) { re(p.f,p.s); }
template<class A> void re(vector<A>& x) { trav(a,x) re(a); }
template<class A, size_t SZ> void re(array<A,SZ>& x) { trav(a,x) re(a); }

// TO_STRING
#define ts to_string
str ts(char c) { return str(1,c); }
str ts(bool b) { return b ? "true" : "false"; }
str ts(const char* s) { return (str)s; }
str ts(str s) { return s; }
template<class A> str ts(complex<A> c) { 
    stringstream ss; ss << c; return ss.str(); }
str ts(vector<bool> v) { 
    str res = "{"; F0R(i,sz(v)) res += char('0'+v[i]);
    res += "}"; return res; }
template<size_t SZ> str ts(bitset<SZ> b) {
    str res = ""; F0R(i,SZ) res += char('0'+b[i]);
    return res; }
template<class A, class B> str ts(pair<A,B> p);
template<class T> str ts(T v) { // containers with begin(), end()
    bool fst = 1; str res = "{";
    for (const auto& x: v) {
        if (!fst) res += ", ";
        fst = 0; res += ts(x);
    }
    res += "}"; return res;
}
template<class A, class B> str ts(pair<A,B> p) {
    return "("+ts(p.f)+", "+ts(p.s)+")"; }

// OUTPUT
template<class A> void pr(A x) { cout << ts(x); }
template<class H, class... T> void pr(const H& h, const T&... t) { 
    pr(h); pr(t...); }
void ps() { pr("\n"); } // print w/ spaces
template<class H, class... T> void ps(const H& h, const T&... t) { 
    pr(h); if (sizeof...(t)) pr(" "); ps(t...); }

// DEBUG
void DBG() { cerr << "]" << endl; }
template<class H, class... T> void DBG(H h, T... t) {
    cerr << ts(h); if (sizeof...(t)) cerr << ", ";
    DBG(t...); }
#ifdef LOCAL // compile with -DLOCAL
#define dbg(...) cerr << "LINE(" << __LINE__ << ") -> [" << #__VA_ARGS__ << "]: [", DBG(__VA_ARGS__)
#else
#define dbg(...) 0
#endif

// FILE I/O
void setIn(string s) { freopen(s.c_str(),"r",stdin); }
void setOut(string s) { freopen(s.c_str(),"w",stdout); }
void unsyncIO() { ios_base::sync_with_stdio(0); cin.tie(0); }
void setIO(string s = "") {
    unsyncIO();
    // cin.exceptions(cin.failbit); 
    // throws exception when do smth illegal
    // ex. try to read letter into int
    if (sz(s)) { setIn(s+".in"), setOut(s+".out"); } // for USACO
}


/**
 * Description: 1D range minimum query. Can also do queries 
     * for any associative operation in $O(1)$ with D\&C
 * Source: KACTL
 * Verification: 
    * https://cses.fi/problemset/stats/1647/
    * http://wcipeg.com/problem/ioi1223
    * https://pastebin.com/ChpniVZL
 * Memory: O(N\log N)
 * Time: O(1)
 */

template<class T> struct RMQ { // floor(log_2(x))
    int level(int x) { return 31-__builtin_clz(x); } 
    vector<T> v; vector<vi> jmp;
    int comb(int a, int b) { // index of min
        return v[a]==v[b]?min(a,b):(v[a]<v[b]?a:b); } 
    void init(const vector<T>& _v) {
        v = _v; jmp = {vi(sz(v))}; iota(all(jmp[0]),0);
        for (int j = 1; 1<<j <= sz(v); ++j) {
            jmp.pb(vi(sz(v)-(1<<j)+1));
            F0R(i,sz(jmp[j])) jmp[j][i] = comb(jmp[j-1][i],
                                    jmp[j-1][i+(1<<(j-1))]);
        }
    }
    int index(int l, int r) { // get index of min element
        int d = level(r-l+1);
        return comb(jmp[d][l],jmp[d][r-(1<<d)+1]); }
    T query(int l, int r) { return v[index(l,r)]; }
};



template<int SZ> struct LCA {
    int N, R = 1, depth[SZ], st[SZ];
    vi adj[SZ]; vpi tmp; RMQ<pi> r;
    void ae(int u, int v) { adj[u].pb(v), adj[v].pb(u); }
    void dfs(int u, int p) {
        st[u] = sz(tmp), depth[u] = depth[p]+1;
        tmp.eb(depth[u],u); 
        trav(v,adj[u]) if (v != p) 
            dfs(v,u), tmp.eb(depth[u],u);
    }
    void init(int _N) { N = _N; dfs(R,0); r.init(tmp); }
    int lca(int u, int v){
        u = st[u], v = st[v]; if (u > v) swap(u,v);
        return r.query(u,v).s; }
    /// int dist(int u, int v) {
        /// return depth[u]+depth[v]-2*depth[lca(u,v)]; }
    vpi compress(vi S) {
        static vi rev; rev.rsz(N+1);
        auto cmp = [&](int a, int b) { return st[a] < st[b]; };
        sort(all(S),cmp); R0F(i,sz(S)-1) S.pb(lca(S[i],S[i+1]));
        sort(all(S),cmp); S.erase(unique(all(S)),end(S));
        vpi ret{{0,S[0]}}; F0R(i,sz(S)) rev[S[i]] = i;
        F0R(i,sz(S)-1) ret.eb(rev[lca(S[i],S[i+1])],S[i+1]);
        return ret;
    }
};


/**
 * Description: 1D range update and query, $SZ=2^p$.
 * Source: USACO Counting Haybales
 * Verification: SPOJ Horrible
 */

template<class T, int SZ> struct LazySeg { 
    T sum[2*SZ], lazy[2*SZ]; 
    LazySeg() { F0R(i,2*SZ) sum[i] = lazy[i] = 0; }
    void push(int ind, int L, int R) { /// modify values for current node
        if (L != R) F0R(i,2) lazy[2*ind+i] += lazy[ind]; /// prop to children
        sum[ind] += (R-L+1)*lazy[ind]; lazy[ind] = 0; 
    } // recalc values for current node
    void pull(int ind) { sum[ind] = sum[2*ind]+sum[2*ind+1]; }
    void build() { ROF(i,1,SZ) pull(i); }
    void upd(int lo,int hi,T inc,int ind=1,int L=0, int R=SZ-1) {
        push(ind,L,R); if (hi < L || R < lo) return;
        if (lo <= L && R <= hi) { 
            lazy[ind] = inc; push(ind,L,R); return; }
        int M = (L+R)/2; upd(lo,hi,inc,2*ind,L,M); 
        upd(lo,hi,inc,2*ind+1,M+1,R); pull(ind);
    }
    T qsum(int lo, int hi, int ind=1, int L=0, int R = SZ-1) {
        push(ind,L,R); if (lo > R || L > hi) return 0;
        if (lo <= L && R <= hi) return sum[ind];
        int M = (L+R)/2; 
        return qsum(lo,hi,2*ind,L,M)+qsum(lo,hi,2*ind+1,M+1,R);
    }
};


template<int SZ, bool VALS_IN_EDGES> struct HLD { 
    int N; vi adj[SZ];
    int par[SZ], sz[SZ], depth[SZ];
    int pos[SZ]; /// vi rpos;
    void ae(int a, int b) { adj[a].pb(b), adj[b].pb(a); }
    void dfsSz(int v = 1) {
        if (par[v]) adj[v].erase(find(all(adj[v]),par[v]));
        sz[v] = 1;
        trav(u,adj[v]) {
            par[u] = v; depth[u] = depth[v]+1;
            dfsSz(u); sz[v] += sz[u];
        }
    }
    void dfsHld(int v = 1) {
        static int t = 0; pos[v] = t++; /// rpos.pb(v);
        trav(u,adj[v]) {
            dfsHld(u); }
    }
    void init(int _N) {
        N = _N; par[1] = depth[1] = 0;
        dfsSz(); dfsHld(); }
    LazySeg<ll,SZ> tree;

    void modifySubtree(int v, int val) { 
        tree.upd(pos[v]+VALS_IN_EDGES,pos[v]+sz[v]-1,val); }

    ll queryPoint(int u) { 
        return tree.qsum(pos[u], pos[u]); 
    }
};



const int mx = 131072;
int N, M;
vi adj[mx];
int A[mx];
int B[mx];
int C[mx];
vi queries[mx];
int dp1[mx];
int dp2[mx];
LCA<mx> lca;
HLD<mx, false> hld; 

void solve(int node, int prv = -1){
    for(auto u: adj[node]){
        if(u == prv) continue;
        solve(u, node);
        dp2[node]+=dp1[u];
    }
    //hld.modifyPath(node, node, dp2[node]);
    hld.modifySubtree(node, dp2[node]);
    int curans = dp2[node];
    for(auto u: queries[node]){
        
        //dbg(A[u], B[u], hld.queryPath(A[u], B[u]));
        //ckmax(curans, int(hld.queryPath(A[u], B[u])+C[u]));
        ckmax(curans, int(hld.queryPoint(A[u])+hld.queryPoint(B[u])-hld.queryPoint(node)+C[u]));
    }
    dp1[node] = curans;
    hld.modifySubtree(node, -dp1[node]);
    //dbg(node, dp1[node], dp2[node]);
}

int main() {
    setIO();
    cin >> N;
    for(int i = 1; i <= N-1; i++){
        int X, Y;
        cin >> X >> Y;
        adj[X].pb(Y);
        adj[Y].pb(X);
        lca.ae(X, Y);
        hld.ae(X, Y);
    }
    lca.init(N);
    hld.init(N);
    cin >> M;
    for(int i = 1; i <= M; i++){
        cin >> A[i] >> B[i] >> C[i];
        queries[lca.lca(A[i], B[i])].pb(i);
    }

    solve(1);
    ps(dp1[1]);
    // you should actually read the stuff at the bottom
}

/* stuff you should look for
    * int overflow, array bounds
    * special cases (n=1?)
    * do smth instead of nothing and stay organized
    * WRITE STUFF DOWN
*/

Compilation message

election_campaign.cpp: In function 'void setIn(std::__cxx11::string)':
election_campaign.cpp:128:31: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
 void setIn(string s) { freopen(s.c_str(),"r",stdin); }
                        ~~~~~~~^~~~~~~~~~~~~~~~~~~~~
election_campaign.cpp: In function 'void setOut(std::__cxx11::string)':
election_campaign.cpp:129:32: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
 void setOut(string s) { freopen(s.c_str(),"w",stdout); }
                         ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 14 ms 16768 KB Output is correct
2 Correct 14 ms 16896 KB Output is correct
3 Correct 15 ms 16896 KB Output is correct
4 Correct 16 ms 17024 KB Output is correct
5 Correct 280 ms 46180 KB Output is correct
6 Correct 171 ms 62824 KB Output is correct
7 Correct 258 ms 56808 KB Output is correct
8 Correct 200 ms 46576 KB Output is correct
9 Correct 260 ms 53480 KB Output is correct
10 Correct 207 ms 46696 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 14 ms 16768 KB Output is correct
2 Correct 15 ms 16768 KB Output is correct
3 Correct 15 ms 17280 KB Output is correct
4 Correct 285 ms 65128 KB Output is correct
5 Correct 279 ms 64992 KB Output is correct
6 Correct 297 ms 65000 KB Output is correct
7 Correct 285 ms 65048 KB Output is correct
8 Correct 292 ms 65000 KB Output is correct
9 Correct 280 ms 65128 KB Output is correct
10 Correct 278 ms 65000 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 14 ms 16768 KB Output is correct
2 Correct 15 ms 16768 KB Output is correct
3 Correct 15 ms 17280 KB Output is correct
4 Correct 285 ms 65128 KB Output is correct
5 Correct 279 ms 64992 KB Output is correct
6 Correct 297 ms 65000 KB Output is correct
7 Correct 285 ms 65048 KB Output is correct
8 Correct 292 ms 65000 KB Output is correct
9 Correct 280 ms 65128 KB Output is correct
10 Correct 278 ms 65000 KB Output is correct
11 Correct 37 ms 17664 KB Output is correct
12 Correct 298 ms 65132 KB Output is correct
13 Correct 277 ms 65000 KB Output is correct
14 Correct 278 ms 65128 KB Output is correct
15 Correct 286 ms 65132 KB Output is correct
16 Correct 286 ms 65128 KB Output is correct
17 Correct 289 ms 65128 KB Output is correct
18 Correct 277 ms 65060 KB Output is correct
19 Correct 280 ms 65128 KB Output is correct
20 Correct 288 ms 65128 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 416 ms 47828 KB Output is correct
2 Correct 279 ms 65128 KB Output is correct
3 Correct 408 ms 58476 KB Output is correct
4 Correct 336 ms 48612 KB Output is correct
5 Correct 401 ms 57448 KB Output is correct
6 Correct 341 ms 48596 KB Output is correct
7 Correct 441 ms 56936 KB Output is correct
8 Correct 437 ms 48232 KB Output is correct
9 Correct 288 ms 65256 KB Output is correct
10 Correct 447 ms 55016 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 14 ms 16768 KB Output is correct
2 Correct 14 ms 16896 KB Output is correct
3 Correct 15 ms 16896 KB Output is correct
4 Correct 16 ms 17024 KB Output is correct
5 Correct 280 ms 46180 KB Output is correct
6 Correct 171 ms 62824 KB Output is correct
7 Correct 258 ms 56808 KB Output is correct
8 Correct 200 ms 46576 KB Output is correct
9 Correct 260 ms 53480 KB Output is correct
10 Correct 207 ms 46696 KB Output is correct
11 Correct 16 ms 17024 KB Output is correct
12 Correct 16 ms 17280 KB Output is correct
13 Correct 17 ms 17152 KB Output is correct
14 Correct 16 ms 17024 KB Output is correct
15 Correct 17 ms 17024 KB Output is correct
16 Correct 17 ms 17152 KB Output is correct
17 Correct 16 ms 17024 KB Output is correct
18 Correct 17 ms 17152 KB Output is correct
19 Correct 17 ms 17152 KB Output is correct
20 Correct 16 ms 17280 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 14 ms 16768 KB Output is correct
2 Correct 14 ms 16896 KB Output is correct
3 Correct 15 ms 16896 KB Output is correct
4 Correct 16 ms 17024 KB Output is correct
5 Correct 280 ms 46180 KB Output is correct
6 Correct 171 ms 62824 KB Output is correct
7 Correct 258 ms 56808 KB Output is correct
8 Correct 200 ms 46576 KB Output is correct
9 Correct 260 ms 53480 KB Output is correct
10 Correct 207 ms 46696 KB Output is correct
11 Correct 14 ms 16768 KB Output is correct
12 Correct 15 ms 16768 KB Output is correct
13 Correct 15 ms 17280 KB Output is correct
14 Correct 285 ms 65128 KB Output is correct
15 Correct 279 ms 64992 KB Output is correct
16 Correct 297 ms 65000 KB Output is correct
17 Correct 285 ms 65048 KB Output is correct
18 Correct 292 ms 65000 KB Output is correct
19 Correct 280 ms 65128 KB Output is correct
20 Correct 278 ms 65000 KB Output is correct
21 Correct 37 ms 17664 KB Output is correct
22 Correct 298 ms 65132 KB Output is correct
23 Correct 277 ms 65000 KB Output is correct
24 Correct 278 ms 65128 KB Output is correct
25 Correct 286 ms 65132 KB Output is correct
26 Correct 286 ms 65128 KB Output is correct
27 Correct 289 ms 65128 KB Output is correct
28 Correct 277 ms 65060 KB Output is correct
29 Correct 280 ms 65128 KB Output is correct
30 Correct 288 ms 65128 KB Output is correct
31 Correct 416 ms 47828 KB Output is correct
32 Correct 279 ms 65128 KB Output is correct
33 Correct 408 ms 58476 KB Output is correct
34 Correct 336 ms 48612 KB Output is correct
35 Correct 401 ms 57448 KB Output is correct
36 Correct 341 ms 48596 KB Output is correct
37 Correct 441 ms 56936 KB Output is correct
38 Correct 437 ms 48232 KB Output is correct
39 Correct 288 ms 65256 KB Output is correct
40 Correct 447 ms 55016 KB Output is correct
41 Correct 16 ms 17024 KB Output is correct
42 Correct 16 ms 17280 KB Output is correct
43 Correct 17 ms 17152 KB Output is correct
44 Correct 16 ms 17024 KB Output is correct
45 Correct 17 ms 17024 KB Output is correct
46 Correct 17 ms 17152 KB Output is correct
47 Correct 16 ms 17024 KB Output is correct
48 Correct 17 ms 17152 KB Output is correct
49 Correct 17 ms 17152 KB Output is correct
50 Correct 16 ms 17280 KB Output is correct
51 Correct 435 ms 48232 KB Output is correct
52 Correct 303 ms 65128 KB Output is correct
53 Correct 422 ms 55528 KB Output is correct
54 Correct 320 ms 48484 KB Output is correct
55 Correct 406 ms 47872 KB Output is correct
56 Correct 304 ms 65128 KB Output is correct
57 Correct 445 ms 56440 KB Output is correct
58 Correct 376 ms 48488 KB Output is correct
59 Correct 451 ms 48236 KB Output is correct
60 Correct 289 ms 65128 KB Output is correct
61 Correct 432 ms 56684 KB Output is correct
62 Correct 396 ms 48716 KB Output is correct
63 Correct 403 ms 47908 KB Output is correct
64 Correct 283 ms 65004 KB Output is correct
65 Correct 451 ms 56552 KB Output is correct
66 Correct 329 ms 48708 KB Output is correct
67 Correct 417 ms 47976 KB Output is correct
68 Correct 290 ms 65132 KB Output is correct
69 Correct 412 ms 53864 KB Output is correct
70 Correct 341 ms 48616 KB Output is correct