답안 #240959

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
240959 2020-06-21T21:37:54 Z rqi Election Campaign (JOI15_election_campaign) C++14
100 / 100
397 ms 55912 KB
#include <bits/stdc++.h>
using namespace std;
 
typedef long long ll;
typedef long double ld;
typedef double db; 
typedef string str; 

typedef pair<int,int> pi;
typedef pair<ll,ll> pl; 
typedef pair<db,db> pd; 

typedef vector<int> vi; 
typedef vector<ll> vl; 
typedef vector<db> vd; 
typedef vector<str> vs; 
typedef vector<pi> vpi;
typedef vector<pl> vpl; 
typedef vector<pd> vpd; 

#define mp make_pair
#define f first
#define s second
#define sz(x) (int)x.size()
#define all(x) begin(x), end(x)
#define rall(x) (x).rbegin(), (x).rend() 
#define rsz resize
#define ins insert 
#define ft front() 
#define bk back()
#define pf push_front 
#define pb push_back
#define eb emplace_back 
#define lb lower_bound 
#define ub upper_bound 

#define FOR(i,a,b) for (int i = (a); i < (b); ++i)
#define F0R(i,a) FOR(i,0,a)
#define ROF(i,a,b) for (int i = (b)-1; i >= (a); --i)
#define R0F(i,a) ROF(i,0,a)
#define trav(a,x) for (auto& a: x)

const int MOD = 1e9+7; // 998244353;
const int MX = 2e5+5; 
const ll INF = 1e18; 
const ld PI = acos((ld)-1);
const int xd[4] = {1,0,-1,0}, yd[4] = {0,1,0,-1}; 
mt19937 rng((uint32_t)chrono::steady_clock::now().time_since_epoch().count()); 

template<class T> bool ckmin(T& a, const T& b) { 
    return b < a ? a = b, 1 : 0; }
template<class T> bool ckmax(T& a, const T& b) { 
    return a < b ? a = b, 1 : 0; } 
int pct(int x) { return __builtin_popcount(x); } 
int bits(int x) { return 31-__builtin_clz(x); } // floor(log2(x)) 
int cdiv(int a, int b) { return a/b+!(a<0||a%b == 0); } // division of a by b rounded up, assumes b > 0 
int fstTrue(function<bool(int)> f, int lo, int hi) {
    hi ++; assert(lo <= hi); // assuming f is increasing
    while (lo < hi) { // find first index such that f is true 
        int mid = (lo+hi)/2; 
        f(mid) ? hi = mid : lo = mid+1; 
    } 
    return lo;
}

// INPUT
template<class A> void re(complex<A>& c);
template<class A, class B> void re(pair<A,B>& p);
template<class A> void re(vector<A>& v);
template<class A, size_t SZ> void re(array<A,SZ>& a);

template<class T> void re(T& x) { cin >> x; }
void re(db& d) { str t; re(t); d = stod(t); }
void re(ld& d) { str t; re(t); d = stold(t); }
template<class H, class... T> void re(H& h, T&... t) { re(h); re(t...); }

template<class A> void re(complex<A>& c) { A a,b; re(a,b); c = {a,b}; }
template<class A, class B> void re(pair<A,B>& p) { re(p.f,p.s); }
template<class A> void re(vector<A>& x) { trav(a,x) re(a); }
template<class A, size_t SZ> void re(array<A,SZ>& x) { trav(a,x) re(a); }

// TO_STRING
#define ts to_string
str ts(char c) { return str(1,c); }
str ts(bool b) { return b ? "true" : "false"; }
str ts(const char* s) { return (str)s; }
str ts(str s) { return s; }
template<class A> str ts(complex<A> c) { 
    stringstream ss; ss << c; return ss.str(); }
str ts(vector<bool> v) { 
    str res = "{"; F0R(i,sz(v)) res += char('0'+v[i]);
    res += "}"; return res; }
template<size_t SZ> str ts(bitset<SZ> b) {
    str res = ""; F0R(i,SZ) res += char('0'+b[i]);
    return res; }
template<class A, class B> str ts(pair<A,B> p);
template<class T> str ts(T v) { // containers with begin(), end()
    bool fst = 1; str res = "{";
    for (const auto& x: v) {
        if (!fst) res += ", ";
        fst = 0; res += ts(x);
    }
    res += "}"; return res;
}
template<class A, class B> str ts(pair<A,B> p) {
    return "("+ts(p.f)+", "+ts(p.s)+")"; }

// OUTPUT
template<class A> void pr(A x) { cout << ts(x); }
template<class H, class... T> void pr(const H& h, const T&... t) { 
    pr(h); pr(t...); }
void ps() { pr("\n"); } // print w/ spaces
template<class H, class... T> void ps(const H& h, const T&... t) { 
    pr(h); if (sizeof...(t)) pr(" "); ps(t...); }

// DEBUG
void DBG() { cerr << "]" << endl; }
template<class H, class... T> void DBG(H h, T... t) {
    cerr << ts(h); if (sizeof...(t)) cerr << ", ";
    DBG(t...); }
#ifdef LOCAL // compile with -DLOCAL
#define dbg(...) cerr << "LINE(" << __LINE__ << ") -> [" << #__VA_ARGS__ << "]: [", DBG(__VA_ARGS__)
#else
#define dbg(...) 0
#endif

// FILE I/O
void setIn(string s) { freopen(s.c_str(),"r",stdin); }
void setOut(string s) { freopen(s.c_str(),"w",stdout); }
void unsyncIO() { ios_base::sync_with_stdio(0); cin.tie(0); }
void setIO(string s = "") {
    unsyncIO();
    // cin.exceptions(cin.failbit); 
    // throws exception when do smth illegal
    // ex. try to read letter into int
    if (sz(s)) { setIn(s+".in"), setOut(s+".out"); } // for USACO
}

const int mx = 131072;
/**
 * Description: 1D range minimum query. Can also do queries 
     * for any associative operation in $O(1)$ with D\&C
 * Source: KACTL
 * Verification: 
    * https://cses.fi/problemset/stats/1647/
    * http://wcipeg.com/problem/ioi1223
    * https://pastebin.com/ChpniVZL
 * Memory: O(N\log N)
 * Time: O(1)
 */

template<class T> struct RMQ { // floor(log_2(x))
    int level(int x) { return 31-__builtin_clz(x); } 
    vector<T> v; vector<vi> jmp;
    int comb(int a, int b) { // index of min
        return v[a]==v[b]?min(a,b):(v[a]<v[b]?a:b); } 
    void init(const vector<T>& _v) {
        v = _v; jmp = {vi(sz(v))}; iota(all(jmp[0]),0);
        for (int j = 1; 1<<j <= sz(v); ++j) {
            jmp.pb(vi(sz(v)-(1<<j)+1));
            F0R(i,sz(jmp[j])) jmp[j][i] = comb(jmp[j-1][i],
                                    jmp[j-1][i+(1<<(j-1))]);
        }
    }
    int index(int l, int r) { // get index of min element
        int d = level(r-l+1);
        return comb(jmp[d][l],jmp[d][r-(1<<d)+1]); }
    T query(int l, int r) { return v[index(l,r)]; }
};



template<int SZ> struct LCA {
    int N, R = 1, depth[SZ], st[SZ];
    vi adj[SZ]; vpi tmp; RMQ<pi> r;
    void ae(int u, int v) { adj[u].pb(v), adj[v].pb(u); }
    void dfs(int u, int p) {
        st[u] = sz(tmp), depth[u] = depth[p]+1;
        tmp.eb(depth[u],u); 
        trav(v,adj[u]) if (v != p) 
            dfs(v,u), tmp.eb(depth[u],u);
    }
    void init(int _N) { N = _N; dfs(R,0); r.init(tmp); }
    int lca(int u, int v){
        u = st[u], v = st[v]; if (u > v) swap(u,v);
        return r.query(u,v).s; }
    /// int dist(int u, int v) {
        /// return depth[u]+depth[v]-2*depth[lca(u,v)]; }
    vpi compress(vi S) {
        static vi rev; rev.rsz(N+1);
        auto cmp = [&](int a, int b) { return st[a] < st[b]; };
        sort(all(S),cmp); R0F(i,sz(S)-1) S.pb(lca(S[i],S[i+1]));
        sort(all(S),cmp); S.erase(unique(all(S)),end(S));
        vpi ret{{0,S[0]}}; F0R(i,sz(S)) rev[S[i]] = i;
        F0R(i,sz(S)-1) ret.eb(rev[lca(S[i],S[i+1])],S[i+1]);
        return ret;
    }
};


/**
 * Description: 1D range update and query, $SZ=2^p$.
 * Source: USACO Counting Haybales
 * Verification: SPOJ Horrible
 */

/**
 * Description: 1D point update, range query where \texttt{comb} is
     * any associative operation. If $N=2^p$ then \texttt{seg[1]==query(0,N-1)}.
 * Time: O(\log N)
 * Source: 
    * http://codeforces.com/blog/entry/18051
    * KACTL
 * Verification: SPOJ Fenwick
 */

template<class T> struct Seg { // comb(ID,b) = b
    const T ID = 0; T comb(T a, T b) { return a+b; } 
    int n; vector<T> seg;
    void init(int _n) { n = _n; seg.assign(2*n,ID); }
    void pull(int p) { seg[p] = comb(seg[2*p],seg[2*p+1]); }
    void upd(int p, T val) { // set val at position p
        seg[p += n] += val; for (p /= 2; p; p /= 2) pull(p); }
    T query(int l, int r) {    // sum on interval [l, r]
        T ra = ID, rb = ID; 
        for (l += n, r += n+1; l < r; l /= 2, r /= 2) {
            if (l&1) ra = comb(ra,seg[l++]);
            if (r&1) rb = comb(seg[--r],rb);
        }
        return comb(ra,rb);
    }
};



template<int SZ, bool VALS_IN_EDGES> struct HLD { 
    int N; vi adj[SZ];
    int par[SZ], sz[SZ], depth[SZ];
    int root[SZ], pos[SZ]; /// vi rpos;
    Seg<int> tree;
    void ae(int a, int b) { adj[a].pb(b), adj[b].pb(a); }
    void dfsSz(int v = 1) {
        if (par[v]) adj[v].erase(find(all(adj[v]),par[v]));
        sz[v] = 1;
        trav(u,adj[v]) {
            par[u] = v; depth[u] = depth[v]+1;
            dfsSz(u); sz[v] += sz[u];
            if (sz[u] > sz[adj[v][0]]) swap(u, adj[v][0]);
        }
    }
    void dfsHld(int v = 1) {
        static int t = 0; pos[v] = t++; /// rpos.pb(v);
        trav(u,adj[v]) {
            root[u] = (u == adj[v][0] ? root[v] : u);
            dfsHld(u); }
    }
    void init(int _N) {
        N = _N; par[1] = depth[1] = 0; root[1] = 1; 
        dfsSz(); dfsHld(); 
        tree.init(mx);

    }
    
    template <class BinaryOp>
    void processPath(int u, int v, BinaryOp op) {
        for (; root[u] != root[v]; v = par[root[v]]) {
            if (depth[root[u]] > depth[root[v]]) swap(u, v);
            op(pos[root[v]], pos[v]); }
        if (depth[u] > depth[v]) swap(u, v);
        op(pos[u]+VALS_IN_EDGES, pos[v]); 
    }
    void modifyPoint(int u, int val) { 
            tree.upd(pos[u],val); }

    ll queryPath(int u, int v) { 
        ll res = 0; processPath(u,v,[this,&res](int l,int r) { 
            res += tree.query(l,r); });
        return res; }
};




int N, M;
vi adj[mx];
int A[mx];
int B[mx];
int C[mx];
vi queries[mx];
int dp1[mx];
int dp2[mx];
LCA<mx> lca;
HLD<mx, false> hld; 

void solve(int node, int prv = -1){
    for(auto u: adj[node]){
        if(u == prv) continue;
        solve(u, node);
        dp2[node]+=dp1[u];
    }
    hld.modifyPoint(node, dp2[node]);
    //hld.modifySubtree(node, dp2[node]);
    int curans = dp2[node];
    for(auto u: queries[node]){
        //ckmax(curans, int(hld.query))
        //dbg(A[u], B[u], hld.queryPath(A[u], B[u]));
        ckmax(curans, int(hld.queryPath(A[u], B[u])+C[u]));
    }
    dp1[node] = curans;
    hld.modifyPoint(node, -dp1[node]);
    //dbg(node, dp1[node], dp2[node]);
}

int main() {
    setIO();
    cin >> N;
    for(int i = 1; i <= N-1; i++){
        int X, Y;
        cin >> X >> Y;
        adj[X].pb(Y);
        adj[Y].pb(X);
        lca.ae(X, Y);
        hld.ae(X, Y);
    }
    lca.init(N);
    hld.init(N);
    cin >> M;
    for(int i = 1; i <= M; i++){
        cin >> A[i] >> B[i] >> C[i];
        queries[lca.lca(A[i], B[i])].pb(i);
    }

    solve(1);
    ps(dp1[1]);
    // you should actually read the stuff at the bottom
}

/* stuff you should look for
    * int overflow, array bounds
    * special cases (n=1?)
    * do smth instead of nothing and stay organized
    * WRITE STUFF DOWN
*/

Compilation message

election_campaign.cpp: In function 'void setIn(std::__cxx11::string)':
election_campaign.cpp:128:31: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
 void setIn(string s) { freopen(s.c_str(),"r",stdin); }
                        ~~~~~~~^~~~~~~~~~~~~~~~~~~~~
election_campaign.cpp: In function 'void setOut(std::__cxx11::string)':
election_campaign.cpp:129:32: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
 void setOut(string s) { freopen(s.c_str(),"w",stdout); }
                         ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 13 ms 13696 KB Output is correct
2 Correct 12 ms 13824 KB Output is correct
3 Correct 14 ms 13696 KB Output is correct
4 Correct 15 ms 13952 KB Output is correct
5 Correct 264 ms 44388 KB Output is correct
6 Correct 124 ms 53352 KB Output is correct
7 Correct 210 ms 50136 KB Output is correct
8 Correct 175 ms 45032 KB Output is correct
9 Correct 194 ms 48272 KB Output is correct
10 Correct 177 ms 45032 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 12 ms 13568 KB Output is correct
2 Correct 14 ms 13696 KB Output is correct
3 Correct 13 ms 14080 KB Output is correct
4 Correct 187 ms 55660 KB Output is correct
5 Correct 173 ms 55788 KB Output is correct
6 Correct 168 ms 55880 KB Output is correct
7 Correct 175 ms 55784 KB Output is correct
8 Correct 173 ms 55756 KB Output is correct
9 Correct 162 ms 55784 KB Output is correct
10 Correct 171 ms 55784 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 12 ms 13568 KB Output is correct
2 Correct 14 ms 13696 KB Output is correct
3 Correct 13 ms 14080 KB Output is correct
4 Correct 187 ms 55660 KB Output is correct
5 Correct 173 ms 55788 KB Output is correct
6 Correct 168 ms 55880 KB Output is correct
7 Correct 175 ms 55784 KB Output is correct
8 Correct 173 ms 55756 KB Output is correct
9 Correct 162 ms 55784 KB Output is correct
10 Correct 171 ms 55784 KB Output is correct
11 Correct 22 ms 14848 KB Output is correct
12 Correct 178 ms 55768 KB Output is correct
13 Correct 181 ms 55784 KB Output is correct
14 Correct 163 ms 55784 KB Output is correct
15 Correct 180 ms 55912 KB Output is correct
16 Correct 165 ms 55784 KB Output is correct
17 Correct 180 ms 55784 KB Output is correct
18 Correct 179 ms 55912 KB Output is correct
19 Correct 168 ms 55784 KB Output is correct
20 Correct 180 ms 55784 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 347 ms 46184 KB Output is correct
2 Correct 166 ms 55784 KB Output is correct
3 Correct 283 ms 52200 KB Output is correct
4 Correct 273 ms 47076 KB Output is correct
5 Correct 290 ms 51696 KB Output is correct
6 Correct 252 ms 47208 KB Output is correct
7 Correct 276 ms 51432 KB Output is correct
8 Correct 397 ms 46568 KB Output is correct
9 Correct 160 ms 55912 KB Output is correct
10 Correct 314 ms 50280 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 13 ms 13696 KB Output is correct
2 Correct 12 ms 13824 KB Output is correct
3 Correct 14 ms 13696 KB Output is correct
4 Correct 15 ms 13952 KB Output is correct
5 Correct 264 ms 44388 KB Output is correct
6 Correct 124 ms 53352 KB Output is correct
7 Correct 210 ms 50136 KB Output is correct
8 Correct 175 ms 45032 KB Output is correct
9 Correct 194 ms 48272 KB Output is correct
10 Correct 177 ms 45032 KB Output is correct
11 Correct 15 ms 14080 KB Output is correct
12 Correct 16 ms 14124 KB Output is correct
13 Correct 15 ms 14080 KB Output is correct
14 Correct 15 ms 14080 KB Output is correct
15 Correct 16 ms 14080 KB Output is correct
16 Correct 14 ms 14080 KB Output is correct
17 Correct 14 ms 14080 KB Output is correct
18 Correct 14 ms 14080 KB Output is correct
19 Correct 14 ms 14080 KB Output is correct
20 Correct 15 ms 14208 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 13 ms 13696 KB Output is correct
2 Correct 12 ms 13824 KB Output is correct
3 Correct 14 ms 13696 KB Output is correct
4 Correct 15 ms 13952 KB Output is correct
5 Correct 264 ms 44388 KB Output is correct
6 Correct 124 ms 53352 KB Output is correct
7 Correct 210 ms 50136 KB Output is correct
8 Correct 175 ms 45032 KB Output is correct
9 Correct 194 ms 48272 KB Output is correct
10 Correct 177 ms 45032 KB Output is correct
11 Correct 12 ms 13568 KB Output is correct
12 Correct 14 ms 13696 KB Output is correct
13 Correct 13 ms 14080 KB Output is correct
14 Correct 187 ms 55660 KB Output is correct
15 Correct 173 ms 55788 KB Output is correct
16 Correct 168 ms 55880 KB Output is correct
17 Correct 175 ms 55784 KB Output is correct
18 Correct 173 ms 55756 KB Output is correct
19 Correct 162 ms 55784 KB Output is correct
20 Correct 171 ms 55784 KB Output is correct
21 Correct 22 ms 14848 KB Output is correct
22 Correct 178 ms 55768 KB Output is correct
23 Correct 181 ms 55784 KB Output is correct
24 Correct 163 ms 55784 KB Output is correct
25 Correct 180 ms 55912 KB Output is correct
26 Correct 165 ms 55784 KB Output is correct
27 Correct 180 ms 55784 KB Output is correct
28 Correct 179 ms 55912 KB Output is correct
29 Correct 168 ms 55784 KB Output is correct
30 Correct 180 ms 55784 KB Output is correct
31 Correct 347 ms 46184 KB Output is correct
32 Correct 166 ms 55784 KB Output is correct
33 Correct 283 ms 52200 KB Output is correct
34 Correct 273 ms 47076 KB Output is correct
35 Correct 290 ms 51696 KB Output is correct
36 Correct 252 ms 47208 KB Output is correct
37 Correct 276 ms 51432 KB Output is correct
38 Correct 397 ms 46568 KB Output is correct
39 Correct 160 ms 55912 KB Output is correct
40 Correct 314 ms 50280 KB Output is correct
41 Correct 15 ms 14080 KB Output is correct
42 Correct 16 ms 14124 KB Output is correct
43 Correct 15 ms 14080 KB Output is correct
44 Correct 15 ms 14080 KB Output is correct
45 Correct 16 ms 14080 KB Output is correct
46 Correct 14 ms 14080 KB Output is correct
47 Correct 14 ms 14080 KB Output is correct
48 Correct 14 ms 14080 KB Output is correct
49 Correct 14 ms 14080 KB Output is correct
50 Correct 15 ms 14208 KB Output is correct
51 Correct 388 ms 46700 KB Output is correct
52 Correct 178 ms 55912 KB Output is correct
53 Correct 280 ms 50412 KB Output is correct
54 Correct 251 ms 47076 KB Output is correct
55 Correct 329 ms 46452 KB Output is correct
56 Correct 183 ms 55784 KB Output is correct
57 Correct 285 ms 51304 KB Output is correct
58 Correct 277 ms 47080 KB Output is correct
59 Correct 337 ms 46784 KB Output is correct
60 Correct 173 ms 55784 KB Output is correct
61 Correct 276 ms 51304 KB Output is correct
62 Correct 246 ms 47208 KB Output is correct
63 Correct 349 ms 46568 KB Output is correct
64 Correct 186 ms 55784 KB Output is correct
65 Correct 292 ms 51304 KB Output is correct
66 Correct 230 ms 47084 KB Output is correct
67 Correct 356 ms 46824 KB Output is correct
68 Correct 173 ms 55784 KB Output is correct
69 Correct 309 ms 49768 KB Output is correct
70 Correct 240 ms 47204 KB Output is correct