답안 #240154

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
240154 2020-06-18T08:43:33 Z IgorI Political Development (BOI17_politicaldevelopment) C++17
62 / 100
1041 ms 63376 KB
const int LG = 21;
const int N = 400030;
const long long MOD = 998244353;
const long long INF = 1e9;
const long long INFLL = 1e18;

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef vector<int> vi;
typedef vector<vector<int> > vvi;
typedef vector<ll> vll;

#define forn(i, n) for (int (i) = 0; (i) != (n); (i)++)
#define all(v) (v).begin(), (v).end()
#define rall(v) (v).rbegin(), (v).rend()
#define popcount(x) __builtin_popcount(x)
#define popcountll(x) __builtin_popcountll(x)
#define fi first
#define se second
#define re return
#define pb push_back
#define uniq(x) sort(all(x)); (x).resize(unique(all(x)) - (x).begin())

#ifdef LOCAL
#define dbg(x) cerr << __LINE__ << " " << #x << " " << x << endl
#define ln cerr << __LINE__ << endl
#else
#define dbg(x) void(0)
#define ln void(0)
#endif // LOCAL

int cx[4] = {-1, 0, 1, 0};
int cy[4] = {0, -1, 0, 1};
string Yes[2] = {"No", "Yes"};
string YES[2] = {"NO", "YES"};

ll inq(ll x, ll y)
{
    if (!y) re 1 % MOD;
    ll l = inq(x, y / 2);
    if (y % 2) re l * l % MOD * x % MOD;
    re l * l % MOD;
}

ll rev(ll x)
{
    return inq(x, MOD - 2);
}

bool __precomputed_combinatorics = 0;
vector<ll> __fact, __ufact, __rev;

void __precompute_combinatorics()
{
    __precomputed_combinatorics = 1;
    __fact.resize(N);
    __ufact.resize(N);
    __rev.resize(N);
    __rev[1] = 1;
    for (int i = 2; i < N; i++) __rev[i] = MOD - __rev[MOD % i] * (MOD / i) % MOD;
    __fact[0] = 1, __ufact[0] = 1;
    for (int i = 1; i < N; i++) __fact[i] = __fact[i - 1] * i % MOD, __ufact[i] = __ufact[i - 1] * __rev[i] % MOD;
}

ll fact(int x)
{
    if (!__precomputed_combinatorics) __precompute_combinatorics();
    return __fact[x];
}

ll cnk(int n, int k)
{
    if (k < 0 || k > n) return 0;
    if (!__precomputed_combinatorics) __precompute_combinatorics();
    return __fact[n] * __ufact[n - k] % MOD * __ufact[k] % MOD;
}

int Root(int x, vector<int> &root)
{
    if (x == root[x]) return x;
    return root[x] = Root(root[x], root);
}

void Merge(int v, int u, vector<int> &root, vector<int> &sz)
{
    v = Root(v, root), u = Root(u, root);
    if (v == u) return;
    if (sz[v] < sz[u])
    {
        sz[u] += sz[v];
        root[v] = u;
    }
    else
    {
        sz[v] += sz[u];
        root[u] = v;
    }
}

int ok(int x, int n)
{
    return 0 <= x && x < n;
}

void bfs(int v, vi &dist, vector<vi> &graph)
{
    fill(all(dist), -1);
    dist[v] = 0;
    vi q = {v};
    for (int i = 0; i < q.size(); i++)
    {
        for (auto u : graph[q[i]])
        {
            if (dist[u] == -1)
            {
                dist[u] = dist[q[i]] + 1;
                q.push_back(u);
            }
        }
    }
}

vector<int> z_func(string &s)
{
    vector<int> z(s.size());
    z[0] = s.size();
    int L = 0, R = 0;
    for (int i = 1; i < s.size(); i++)
    {
        z[i] = max(0, min(z[i - L], R - i));
        while (i + z[i] < s.size() && s[i + z[i]] == s[z[i]]) z[i]++;
        if (i + z[i] > R)
        {
            R = i + z[i];
            L = i;
        }
    }
    return z;
}

vector<int> p_func(string &s)
{
    vector<int> p(s.size());
    for (int i = 1; i < s.size(); i++)
    {
        int j = p[i - 1];
        while (j > 0 && s[i] != s[j])
            j = p[j - 1];
        if (s[i] == s[j])
            j++;
        p[i] = j;
    }
    return p;
}

vector<int> d1_func(string &s)
{
    vector<int> d1(s.size());
    int L = 0, R = -1;
    for (int i = 0; i < s.size(); i++)
    {
        int k = 0;
        if (i <= R) k = min(R - i + 1, d1[R - i + L]);
        while (i + k < s.size() && i - k >= 0 && s[i - k] == s[i + k])
            k++;
        d1[i] = k--;
        if (i + k > R)
        {
            L = i - k;
            R = i + k;
        }
    }
    return d1;
}

vector<int> d2_func(string &s)
{
    vector<int> d2(s.size());
    int L = 0, R = -1;
    for (int i = 1; i < s.size(); i++)
    {
        int k = 0;
        if (i <= R) k = min(R - i + 1, d2[R - i + L + 1]);
        while (i + k < s.size() && i - k - 1 >= 0 && s[i - k - 1] == s[i + k])
            k++;
        d2[i] = k--;
        if (i + k > R)
        {
            L = i - k - 1;
            R = i + k;
        }
    }
    return d2;
}

ll log10(ll x)
{
    if (x < 10) re 1;
    re 1 + log10(x / 10);
}

ll ds(ll x)
{
    if (x < 10) return x;
    re x % 10 + ds(x / 10);
}

double sqr(double x)
{
    return x * x;
}

bool in(int bit, int mask)
{
    return (mask & (1 << bit)) > 0;
}

void Del(vector<int> &v, int pos)
{
    swap(v[pos], v[v.size() - 1]);
    v.pop_back();
}

long long g(vector<long long> &p, int pos)
{
    if (ok(pos, p.size())) return p[pos];
    if (pos < 0 || p.size() == 0) return 0;
    return p.back();
}

int g(vector<int> &p, int pos)
{
    if (ok(pos, p.size())) return p[pos];
    if (pos < 0 || p.size() == 0) return 0;
    return p.back();
}

signed main()
{
    ios_base::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    int n, k;
    cin >> n >> k;
    vector<vector<int> > graph(n);
    map<pii, int> mm;
    forn(i, n)
    {
        int s;
        cin >> s;
        forn(j, s)
        {
            int a;
            cin >> a;
            graph[i].push_back(a);
            mm[{i, a}] = 1;
        }
    }
    set<pair<int, int> > deg_act;
    vector<int> isact(n, 1);
    vector<int> deg(n, 1);
    for (int i = 0; i < n; i++)
    {
        deg_act.insert({graph[i].size(), i});
        deg[i] = graph[i].size();
    }
    int ans = 1;
    while (deg_act.size())
    {
        vector<int> V;
        auto it = deg_act.begin();
        while (V.size() < 1)
        {
            if (it == deg_act.end()) break;
            pii x = *it;
            if (x.first != (*deg_act.begin()).first) break;
            V.push_back(x.second);
            it++;
        }
        for (auto x : V)
        {
            vector<int> v;
            for (auto u : graph[x])
            {
                if (isact[u])
                    v.push_back(u);
            }
            assert(v.size() <= k);
            forn(mask, (1 << v.size()))
            {
                if (popcount(mask) + 1 < ans) continue;
                int t = 1;
                for (int i = 0; t && i < v.size(); i++) for (int j = i + 1; t && j < v.size(); j++) if (in(i, mask) && in(j, mask))
                {
                    if (mm[{v[i], v[j]}] == 0) t = 0;
                    break;
                }
                if (t) ans = max(ans, popcount(mask) + 1);
            }
        }
        for (auto x : V)
        {
            isact[x] = 0;
            deg_act.erase({deg[x], x});
            for (auto u : graph[x])
            {
                if (isact[u])
                {
                    deg_act.erase({deg[u], u});
                    deg[u]--;
                    deg_act.insert({deg[u], u});
                }
            }
        }
    }
    cout << ans;
}

/* Note:
Check constants at the beginning of the code.
    N is set to 4e5 but be careful in problems with large constant factor.
    Setting N in every problem is more effective.
Check corner cases.
    N = 1
No def int long long for now.
Add something here.
*/

Compilation message

politicaldevelopment.cpp: In function 'void bfs(int, vi&, std::vector<std::vector<int> >&)':
politicaldevelopment.cpp:115:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (int i = 0; i < q.size(); i++)
                     ~~^~~~~~~~~~
politicaldevelopment.cpp: In function 'std::vector<int> z_func(std::__cxx11::string&)':
politicaldevelopment.cpp:133:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (int i = 1; i < s.size(); i++)
                     ~~^~~~~~~~~~
politicaldevelopment.cpp:136:25: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
         while (i + z[i] < s.size() && s[i + z[i]] == s[z[i]]) z[i]++;
                ~~~~~~~~~^~~~~~~~~~
politicaldevelopment.cpp: In function 'std::vector<int> p_func(std::__cxx11::string&)':
politicaldevelopment.cpp:149:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (int i = 1; i < s.size(); i++)
                     ~~^~~~~~~~~~
politicaldevelopment.cpp: In function 'std::vector<int> d1_func(std::__cxx11::string&)':
politicaldevelopment.cpp:165:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (int i = 0; i < s.size(); i++)
                     ~~^~~~~~~~~~
politicaldevelopment.cpp:169:22: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
         while (i + k < s.size() && i - k >= 0 && s[i - k] == s[i + k])
                ~~~~~~^~~~~~~~~~
politicaldevelopment.cpp: In function 'std::vector<int> d2_func(std::__cxx11::string&)':
politicaldevelopment.cpp:185:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (int i = 1; i < s.size(); i++)
                     ~~^~~~~~~~~~
politicaldevelopment.cpp:189:22: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
         while (i + k < s.size() && i - k - 1 >= 0 && s[i - k - 1] == s[i + k])
                ~~~~~~^~~~~~~~~~
In file included from /usr/include/c++/7/cassert:44:0,
                 from /usr/include/x86_64-linux-gnu/c++/7/bits/stdc++.h:33,
                 from politicaldevelopment.cpp:7:
politicaldevelopment.cpp: In function 'int main()':
politicaldevelopment.cpp:293:29: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
             assert(v.size() <= k);
                    ~~~~~~~~~^~~~
politicaldevelopment.cpp:298:40: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
                 for (int i = 0; t && i < v.size(); i++) for (int j = i + 1; t && j < v.size(); j++) if (in(i, mask) && in(j, mask))
                                      ~~^~~~~~~~~~
politicaldevelopment.cpp:298:84: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
                 for (int i = 0; t && i < v.size(); i++) for (int j = i + 1; t && j < v.size(); j++) if (in(i, mask) && in(j, mask))
                                                                                  ~~^~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 4 ms 384 KB Output is correct
2 Correct 5 ms 384 KB Output is correct
3 Correct 13 ms 1536 KB Output is correct
4 Correct 11 ms 1536 KB Output is correct
5 Correct 11 ms 1536 KB Output is correct
6 Correct 11 ms 1536 KB Output is correct
7 Correct 13 ms 1536 KB Output is correct
8 Correct 6 ms 768 KB Output is correct
9 Correct 5 ms 384 KB Output is correct
10 Correct 6 ms 768 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 4 ms 384 KB Output is correct
2 Correct 5 ms 384 KB Output is correct
3 Correct 13 ms 1536 KB Output is correct
4 Correct 11 ms 1536 KB Output is correct
5 Correct 11 ms 1536 KB Output is correct
6 Correct 11 ms 1536 KB Output is correct
7 Correct 13 ms 1536 KB Output is correct
8 Correct 6 ms 768 KB Output is correct
9 Correct 5 ms 384 KB Output is correct
10 Correct 6 ms 768 KB Output is correct
11 Correct 11 ms 1536 KB Output is correct
12 Correct 12 ms 1664 KB Output is correct
13 Correct 4 ms 384 KB Output is correct
14 Correct 11 ms 1536 KB Output is correct
15 Correct 4 ms 384 KB Output is correct
16 Correct 12 ms 1536 KB Output is correct
17 Correct 5 ms 384 KB Output is correct
18 Correct 11 ms 1536 KB Output is correct
19 Correct 6 ms 768 KB Output is correct
20 Correct 9 ms 1280 KB Output is correct
21 Correct 9 ms 1152 KB Output is correct
22 Correct 6 ms 768 KB Output is correct
23 Correct 15 ms 1792 KB Output is correct
24 Correct 6 ms 768 KB Output is correct
25 Correct 14 ms 1792 KB Output is correct
26 Correct 12 ms 1664 KB Output is correct
27 Correct 11 ms 1536 KB Output is correct
28 Correct 13 ms 1664 KB Output is correct
29 Correct 11 ms 1536 KB Output is correct
30 Correct 14 ms 1792 KB Output is correct
31 Correct 14 ms 1792 KB Output is correct
32 Correct 13 ms 1792 KB Output is correct
33 Correct 14 ms 1792 KB Output is correct
34 Correct 14 ms 1792 KB Output is correct
35 Correct 9 ms 1024 KB Output is correct
36 Correct 9 ms 1152 KB Output is correct
37 Correct 9 ms 1024 KB Output is correct
38 Correct 7 ms 768 KB Output is correct
39 Correct 7 ms 768 KB Output is correct
40 Correct 20 ms 2304 KB Output is correct
41 Correct 8 ms 768 KB Output is correct
42 Correct 19 ms 2304 KB Output is correct
43 Correct 19 ms 2304 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 6 ms 768 KB Output is correct
2 Correct 5 ms 384 KB Output is correct
3 Correct 5 ms 384 KB Output is correct
4 Correct 5 ms 384 KB Output is correct
5 Correct 5 ms 384 KB Output is correct
6 Correct 5 ms 384 KB Output is correct
7 Correct 5 ms 384 KB Output is correct
8 Correct 5 ms 384 KB Output is correct
9 Correct 5 ms 384 KB Output is correct
10 Correct 5 ms 384 KB Output is correct
11 Correct 1004 ms 63376 KB Output is correct
12 Correct 5 ms 384 KB Output is correct
13 Correct 1041 ms 63224 KB Output is correct
14 Correct 5 ms 384 KB Output is correct
15 Correct 942 ms 63200 KB Output is correct
16 Correct 976 ms 63292 KB Output is correct
17 Correct 988 ms 63352 KB Output is correct
18 Correct 964 ms 63224 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 4 ms 384 KB Output is correct
2 Correct 5 ms 384 KB Output is correct
3 Correct 13 ms 1536 KB Output is correct
4 Correct 11 ms 1536 KB Output is correct
5 Correct 11 ms 1536 KB Output is correct
6 Correct 11 ms 1536 KB Output is correct
7 Correct 13 ms 1536 KB Output is correct
8 Correct 6 ms 768 KB Output is correct
9 Correct 5 ms 384 KB Output is correct
10 Correct 6 ms 768 KB Output is correct
11 Correct 11 ms 1536 KB Output is correct
12 Correct 12 ms 1664 KB Output is correct
13 Correct 4 ms 384 KB Output is correct
14 Correct 11 ms 1536 KB Output is correct
15 Correct 4 ms 384 KB Output is correct
16 Correct 12 ms 1536 KB Output is correct
17 Correct 5 ms 384 KB Output is correct
18 Correct 11 ms 1536 KB Output is correct
19 Correct 6 ms 768 KB Output is correct
20 Correct 9 ms 1280 KB Output is correct
21 Correct 9 ms 1152 KB Output is correct
22 Correct 6 ms 768 KB Output is correct
23 Correct 15 ms 1792 KB Output is correct
24 Correct 6 ms 768 KB Output is correct
25 Correct 14 ms 1792 KB Output is correct
26 Correct 12 ms 1664 KB Output is correct
27 Correct 11 ms 1536 KB Output is correct
28 Correct 13 ms 1664 KB Output is correct
29 Correct 11 ms 1536 KB Output is correct
30 Correct 14 ms 1792 KB Output is correct
31 Correct 14 ms 1792 KB Output is correct
32 Correct 13 ms 1792 KB Output is correct
33 Correct 14 ms 1792 KB Output is correct
34 Correct 14 ms 1792 KB Output is correct
35 Correct 9 ms 1024 KB Output is correct
36 Correct 9 ms 1152 KB Output is correct
37 Correct 9 ms 1024 KB Output is correct
38 Correct 7 ms 768 KB Output is correct
39 Correct 7 ms 768 KB Output is correct
40 Correct 20 ms 2304 KB Output is correct
41 Correct 8 ms 768 KB Output is correct
42 Correct 19 ms 2304 KB Output is correct
43 Correct 19 ms 2304 KB Output is correct
44 Correct 29 ms 3456 KB Output is correct
45 Correct 5 ms 384 KB Output is correct
46 Correct 21 ms 2360 KB Output is correct
47 Incorrect 48 ms 4984 KB Output isn't correct
48 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 4 ms 384 KB Output is correct
2 Correct 5 ms 384 KB Output is correct
3 Correct 13 ms 1536 KB Output is correct
4 Correct 11 ms 1536 KB Output is correct
5 Correct 11 ms 1536 KB Output is correct
6 Correct 11 ms 1536 KB Output is correct
7 Correct 13 ms 1536 KB Output is correct
8 Correct 6 ms 768 KB Output is correct
9 Correct 5 ms 384 KB Output is correct
10 Correct 6 ms 768 KB Output is correct
11 Correct 11 ms 1536 KB Output is correct
12 Correct 12 ms 1664 KB Output is correct
13 Correct 4 ms 384 KB Output is correct
14 Correct 11 ms 1536 KB Output is correct
15 Correct 4 ms 384 KB Output is correct
16 Correct 12 ms 1536 KB Output is correct
17 Correct 5 ms 384 KB Output is correct
18 Correct 11 ms 1536 KB Output is correct
19 Correct 6 ms 768 KB Output is correct
20 Correct 9 ms 1280 KB Output is correct
21 Correct 9 ms 1152 KB Output is correct
22 Correct 6 ms 768 KB Output is correct
23 Correct 15 ms 1792 KB Output is correct
24 Correct 6 ms 768 KB Output is correct
25 Correct 14 ms 1792 KB Output is correct
26 Correct 12 ms 1664 KB Output is correct
27 Correct 11 ms 1536 KB Output is correct
28 Correct 13 ms 1664 KB Output is correct
29 Correct 11 ms 1536 KB Output is correct
30 Correct 14 ms 1792 KB Output is correct
31 Correct 14 ms 1792 KB Output is correct
32 Correct 13 ms 1792 KB Output is correct
33 Correct 14 ms 1792 KB Output is correct
34 Correct 14 ms 1792 KB Output is correct
35 Correct 9 ms 1024 KB Output is correct
36 Correct 9 ms 1152 KB Output is correct
37 Correct 9 ms 1024 KB Output is correct
38 Correct 7 ms 768 KB Output is correct
39 Correct 7 ms 768 KB Output is correct
40 Correct 20 ms 2304 KB Output is correct
41 Correct 8 ms 768 KB Output is correct
42 Correct 19 ms 2304 KB Output is correct
43 Correct 19 ms 2304 KB Output is correct
44 Correct 4 ms 384 KB Output is correct
45 Correct 428 ms 32760 KB Output is correct
46 Correct 157 ms 15480 KB Output is correct
47 Correct 438 ms 33276 KB Output is correct
48 Correct 435 ms 32888 KB Output is correct
49 Correct 92 ms 12276 KB Output is correct
50 Correct 349 ms 31604 KB Output is correct
51 Correct 460 ms 33232 KB Output is correct
52 Correct 85 ms 12280 KB Output is correct
53 Correct 94 ms 12276 KB Output is correct
54 Correct 26 ms 4224 KB Output is correct
55 Correct 349 ms 31732 KB Output is correct
56 Correct 61 ms 8952 KB Output is correct
57 Correct 80 ms 12280 KB Output is correct
58 Correct 132 ms 15224 KB Output is correct
59 Correct 56 ms 8952 KB Output is correct
60 Correct 57 ms 8952 KB Output is correct
61 Correct 132 ms 15224 KB Output is correct
62 Correct 98 ms 12024 KB Output is correct
63 Correct 202 ms 17400 KB Output is correct
64 Correct 60 ms 8952 KB Output is correct
65 Correct 229 ms 20728 KB Output is correct
66 Correct 97 ms 12024 KB Output is correct
67 Correct 202 ms 17384 KB Output is correct
68 Correct 272 ms 21752 KB Output is correct
69 Correct 230 ms 20728 KB Output is correct
70 Correct 95 ms 12152 KB Output is correct
71 Correct 287 ms 21880 KB Output is correct
72 Correct 176 ms 16760 KB Output is correct
73 Correct 352 ms 27508 KB Output is correct
74 Correct 95 ms 12024 KB Output is correct
75 Correct 103 ms 10104 KB Output is correct
76 Correct 172 ms 16632 KB Output is correct
77 Correct 347 ms 27512 KB Output is correct
78 Correct 169 ms 13944 KB Output is correct
79 Correct 100 ms 10104 KB Output is correct
80 Correct 43 ms 5120 KB Output is correct
81 Correct 148 ms 13920 KB Output is correct
82 Correct 239 ms 20344 KB Output is correct
83 Correct 40 ms 5112 KB Output is correct
84 Correct 246 ms 20324 KB Output is correct