답안 #240153

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
240153 2020-06-18T08:23:13 Z IgorI Political Development (BOI17_politicaldevelopment) C++17
39 / 100
451 ms 35192 KB
const int LG = 21;
const int N = 400030;
const long long MOD = 998244353;
const long long INF = 1e9;
const long long INFLL = 1e18;

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef vector<int> vi;
typedef vector<vector<int> > vvi;
typedef vector<ll> vll;

#define forn(i, n) for (int (i) = 0; (i) != (n); (i)++)
#define all(v) (v).begin(), (v).end()
#define rall(v) (v).rbegin(), (v).rend()
#define popcount(x) __builtin_popcount(x)
#define popcountll(x) __builtin_popcountll(x)
#define fi first
#define se second
#define re return
#define pb push_back
#define uniq(x) sort(all(x)); (x).resize(unique(all(x)) - (x).begin())

#ifdef LOCAL
#define dbg(x) cerr << __LINE__ << " " << #x << " " << x << endl
#define ln cerr << __LINE__ << endl
#else
#define dbg(x) void(0)
#define ln void(0)
#endif // LOCAL

int cx[4] = {-1, 0, 1, 0};
int cy[4] = {0, -1, 0, 1};
string Yes[2] = {"No", "Yes"};
string YES[2] = {"NO", "YES"};

ll inq(ll x, ll y)
{
    if (!y) re 1 % MOD;
    ll l = inq(x, y / 2);
    if (y % 2) re l * l % MOD * x % MOD;
    re l * l % MOD;
}

ll rev(ll x)
{
    return inq(x, MOD - 2);
}

bool __precomputed_combinatorics = 0;
vector<ll> __fact, __ufact, __rev;

void __precompute_combinatorics()
{
    __precomputed_combinatorics = 1;
    __fact.resize(N);
    __ufact.resize(N);
    __rev.resize(N);
    __rev[1] = 1;
    for (int i = 2; i < N; i++) __rev[i] = MOD - __rev[MOD % i] * (MOD / i) % MOD;
    __fact[0] = 1, __ufact[0] = 1;
    for (int i = 1; i < N; i++) __fact[i] = __fact[i - 1] * i % MOD, __ufact[i] = __ufact[i - 1] * __rev[i] % MOD;
}

ll fact(int x)
{
    if (!__precomputed_combinatorics) __precompute_combinatorics();
    return __fact[x];
}

ll cnk(int n, int k)
{
    if (k < 0 || k > n) return 0;
    if (!__precomputed_combinatorics) __precompute_combinatorics();
    return __fact[n] * __ufact[n - k] % MOD * __ufact[k] % MOD;
}

int Root(int x, vector<int> &root)
{
    if (x == root[x]) return x;
    return root[x] = Root(root[x], root);
}

void Merge(int v, int u, vector<int> &root, vector<int> &sz)
{
    v = Root(v, root), u = Root(u, root);
    if (v == u) return;
    if (sz[v] < sz[u])
    {
        sz[u] += sz[v];
        root[v] = u;
    }
    else
    {
        sz[v] += sz[u];
        root[u] = v;
    }
}

int ok(int x, int n)
{
    return 0 <= x && x < n;
}

void bfs(int v, vi &dist, vector<vi> &graph)
{
    fill(all(dist), -1);
    dist[v] = 0;
    vi q = {v};
    for (int i = 0; i < q.size(); i++)
    {
        for (auto u : graph[q[i]])
        {
            if (dist[u] == -1)
            {
                dist[u] = dist[q[i]] + 1;
                q.push_back(u);
            }
        }
    }
}

vector<int> z_func(string &s)
{
    vector<int> z(s.size());
    z[0] = s.size();
    int L = 0, R = 0;
    for (int i = 1; i < s.size(); i++)
    {
        z[i] = max(0, min(z[i - L], R - i));
        while (i + z[i] < s.size() && s[i + z[i]] == s[z[i]]) z[i]++;
        if (i + z[i] > R)
        {
            R = i + z[i];
            L = i;
        }
    }
    return z;
}

vector<int> p_func(string &s)
{
    vector<int> p(s.size());
    for (int i = 1; i < s.size(); i++)
    {
        int j = p[i - 1];
        while (j > 0 && s[i] != s[j])
            j = p[j - 1];
        if (s[i] == s[j])
            j++;
        p[i] = j;
    }
    return p;
}

vector<int> d1_func(string &s)
{
    vector<int> d1(s.size());
    int L = 0, R = -1;
    for (int i = 0; i < s.size(); i++)
    {
        int k = 0;
        if (i <= R) k = min(R - i + 1, d1[R - i + L]);
        while (i + k < s.size() && i - k >= 0 && s[i - k] == s[i + k])
            k++;
        d1[i] = k--;
        if (i + k > R)
        {
            L = i - k;
            R = i + k;
        }
    }
    return d1;
}

vector<int> d2_func(string &s)
{
    vector<int> d2(s.size());
    int L = 0, R = -1;
    for (int i = 1; i < s.size(); i++)
    {
        int k = 0;
        if (i <= R) k = min(R - i + 1, d2[R - i + L + 1]);
        while (i + k < s.size() && i - k - 1 >= 0 && s[i - k - 1] == s[i + k])
            k++;
        d2[i] = k--;
        if (i + k > R)
        {
            L = i - k - 1;
            R = i + k;
        }
    }
    return d2;
}

ll log10(ll x)
{
    if (x < 10) re 1;
    re 1 + log10(x / 10);
}

ll ds(ll x)
{
    if (x < 10) return x;
    re x % 10 + ds(x / 10);
}

double sqr(double x)
{
    return x * x;
}

bool in(int bit, int mask)
{
    return (mask & (1 << bit)) > 0;
}

void Del(vector<int> &v, int pos)
{
    swap(v[pos], v[v.size() - 1]);
    v.pop_back();
}

long long g(vector<long long> &p, int pos)
{
    if (ok(pos, p.size())) return p[pos];
    if (pos < 0 || p.size() == 0) return 0;
    return p.back();
}

int g(vector<int> &p, int pos)
{
    if (ok(pos, p.size())) return p[pos];
    if (pos < 0 || p.size() == 0) return 0;
    return p.back();
}

signed main()
{
    ios_base::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    int n, k;
    cin >> n >> k;
    vector<vector<int> > graph(n);
    map<pii, int> mm;
    forn(i, n)
    {
        int s;
        cin >> s;
        forn(j, s)
        {
            int a;
            cin >> a;
            graph[i].push_back(a);
            mm[{i, a}] = 1;
        }
    }
    set<pair<int, int> > deg_act;
    vector<int> isact(n, 1);
    vector<int> deg(n, 1);
    for (int i = 0; i < n; i++)
    {
        deg_act.insert({graph[i].size(), i});
        deg[i] = graph[i].size();
    }
    int ans = 1;
    while (deg_act.size())
    {
        vector<int> V;
        auto it = deg_act.begin();
        while (1)
        {
            if (it == deg_act.end()) break;
            pii x = *it;
            if (x.first != (*deg_act.begin()).first) break;
            V.push_back(x.second);
            it++;
        }
        for (auto x : V)
        {
            vector<int> v;
            for (auto u : graph[x])
            {
                if (isact[u])
                    v.push_back(u);
            }
            assert(v.size() <= k);
            forn(mask, (1 << v.size()))
            {
                if (popcount(mask) + 1 < ans) continue;
                int t = 1;
                for (int i = 0; t && i < v.size(); i++) for (int j = i + 1; t && j < v.size(); j++) if (in(i, mask) && in(j, mask))
                {
                    if (mm[{v[i], v[j]}] == 0) t = 0;
                    break;
                }
                if (t) ans = max(ans, popcount(mask) + 1);
            }
        }
        for (auto x : V)
        {
            isact[x] = 0;
            deg_act.erase({deg[x], x});
            for (auto u : graph[x])
            {
                if (isact[u])
                {
                    deg_act.erase({deg[u], u});
                    deg[u]--;
                    deg_act.insert({deg[u], u});
                }
            }
        }
    }
    cout << ans;
}

/* Note:
Check constants at the beginning of the code.
    N is set to 4e5 but be careful in problems with large constant factor.
    Setting N in every problem is more effective.
Check corner cases.
    N = 1
No def int long long for now.
Add something here.
*/

Compilation message

politicaldevelopment.cpp: In function 'void bfs(int, vi&, std::vector<std::vector<int> >&)':
politicaldevelopment.cpp:115:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (int i = 0; i < q.size(); i++)
                     ~~^~~~~~~~~~
politicaldevelopment.cpp: In function 'std::vector<int> z_func(std::__cxx11::string&)':
politicaldevelopment.cpp:133:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (int i = 1; i < s.size(); i++)
                     ~~^~~~~~~~~~
politicaldevelopment.cpp:136:25: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
         while (i + z[i] < s.size() && s[i + z[i]] == s[z[i]]) z[i]++;
                ~~~~~~~~~^~~~~~~~~~
politicaldevelopment.cpp: In function 'std::vector<int> p_func(std::__cxx11::string&)':
politicaldevelopment.cpp:149:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (int i = 1; i < s.size(); i++)
                     ~~^~~~~~~~~~
politicaldevelopment.cpp: In function 'std::vector<int> d1_func(std::__cxx11::string&)':
politicaldevelopment.cpp:165:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (int i = 0; i < s.size(); i++)
                     ~~^~~~~~~~~~
politicaldevelopment.cpp:169:22: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
         while (i + k < s.size() && i - k >= 0 && s[i - k] == s[i + k])
                ~~~~~~^~~~~~~~~~
politicaldevelopment.cpp: In function 'std::vector<int> d2_func(std::__cxx11::string&)':
politicaldevelopment.cpp:185:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (int i = 1; i < s.size(); i++)
                     ~~^~~~~~~~~~
politicaldevelopment.cpp:189:22: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
         while (i + k < s.size() && i - k - 1 >= 0 && s[i - k - 1] == s[i + k])
                ~~~~~~^~~~~~~~~~
In file included from /usr/include/c++/7/cassert:44:0,
                 from /usr/include/x86_64-linux-gnu/c++/7/bits/stdc++.h:33,
                 from politicaldevelopment.cpp:7:
politicaldevelopment.cpp: In function 'int main()':
politicaldevelopment.cpp:293:29: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
             assert(v.size() <= k);
                    ~~~~~~~~~^~~~
politicaldevelopment.cpp:298:40: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
                 for (int i = 0; t && i < v.size(); i++) for (int j = i + 1; t && j < v.size(); j++) if (in(i, mask) && in(j, mask))
                                      ~~^~~~~~~~~~
politicaldevelopment.cpp:298:84: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
                 for (int i = 0; t && i < v.size(); i++) for (int j = i + 1; t && j < v.size(); j++) if (in(i, mask) && in(j, mask))
                                                                                  ~~^~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 5 ms 384 KB Output is correct
2 Correct 4 ms 384 KB Output is correct
3 Correct 12 ms 1536 KB Output is correct
4 Correct 11 ms 1536 KB Output is correct
5 Correct 11 ms 1664 KB Output is correct
6 Correct 14 ms 1536 KB Output is correct
7 Correct 11 ms 1664 KB Output is correct
8 Correct 6 ms 768 KB Output is correct
9 Correct 5 ms 384 KB Output is correct
10 Correct 6 ms 768 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 5 ms 384 KB Output is correct
2 Correct 4 ms 384 KB Output is correct
3 Correct 12 ms 1536 KB Output is correct
4 Correct 11 ms 1536 KB Output is correct
5 Correct 11 ms 1664 KB Output is correct
6 Correct 14 ms 1536 KB Output is correct
7 Correct 11 ms 1664 KB Output is correct
8 Correct 6 ms 768 KB Output is correct
9 Correct 5 ms 384 KB Output is correct
10 Correct 6 ms 768 KB Output is correct
11 Correct 11 ms 1664 KB Output is correct
12 Correct 11 ms 1664 KB Output is correct
13 Correct 5 ms 384 KB Output is correct
14 Correct 10 ms 1536 KB Output is correct
15 Correct 4 ms 384 KB Output is correct
16 Correct 13 ms 1536 KB Output is correct
17 Correct 4 ms 384 KB Output is correct
18 Correct 11 ms 1536 KB Output is correct
19 Correct 6 ms 768 KB Output is correct
20 Correct 9 ms 1280 KB Output is correct
21 Correct 9 ms 1280 KB Output is correct
22 Correct 6 ms 768 KB Output is correct
23 Correct 16 ms 1792 KB Output is correct
24 Correct 6 ms 768 KB Output is correct
25 Correct 14 ms 1792 KB Output is correct
26 Correct 14 ms 1664 KB Output is correct
27 Correct 14 ms 2048 KB Output is correct
28 Correct 15 ms 1664 KB Output is correct
29 Correct 13 ms 1792 KB Output is correct
30 Correct 16 ms 1920 KB Output is correct
31 Correct 15 ms 1920 KB Output is correct
32 Correct 15 ms 1920 KB Output is correct
33 Correct 15 ms 1920 KB Output is correct
34 Correct 15 ms 1920 KB Output is correct
35 Correct 9 ms 1152 KB Output is correct
36 Correct 9 ms 1152 KB Output is correct
37 Correct 10 ms 1152 KB Output is correct
38 Correct 7 ms 896 KB Output is correct
39 Correct 8 ms 896 KB Output is correct
40 Correct 20 ms 2304 KB Output is correct
41 Correct 8 ms 896 KB Output is correct
42 Correct 19 ms 2304 KB Output is correct
43 Correct 19 ms 2304 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 8 ms 768 KB Output is correct
2 Correct 5 ms 384 KB Output is correct
3 Incorrect 5 ms 384 KB Output isn't correct
4 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 5 ms 384 KB Output is correct
2 Correct 4 ms 384 KB Output is correct
3 Correct 12 ms 1536 KB Output is correct
4 Correct 11 ms 1536 KB Output is correct
5 Correct 11 ms 1664 KB Output is correct
6 Correct 14 ms 1536 KB Output is correct
7 Correct 11 ms 1664 KB Output is correct
8 Correct 6 ms 768 KB Output is correct
9 Correct 5 ms 384 KB Output is correct
10 Correct 6 ms 768 KB Output is correct
11 Correct 11 ms 1664 KB Output is correct
12 Correct 11 ms 1664 KB Output is correct
13 Correct 5 ms 384 KB Output is correct
14 Correct 10 ms 1536 KB Output is correct
15 Correct 4 ms 384 KB Output is correct
16 Correct 13 ms 1536 KB Output is correct
17 Correct 4 ms 384 KB Output is correct
18 Correct 11 ms 1536 KB Output is correct
19 Correct 6 ms 768 KB Output is correct
20 Correct 9 ms 1280 KB Output is correct
21 Correct 9 ms 1280 KB Output is correct
22 Correct 6 ms 768 KB Output is correct
23 Correct 16 ms 1792 KB Output is correct
24 Correct 6 ms 768 KB Output is correct
25 Correct 14 ms 1792 KB Output is correct
26 Correct 14 ms 1664 KB Output is correct
27 Correct 14 ms 2048 KB Output is correct
28 Correct 15 ms 1664 KB Output is correct
29 Correct 13 ms 1792 KB Output is correct
30 Correct 16 ms 1920 KB Output is correct
31 Correct 15 ms 1920 KB Output is correct
32 Correct 15 ms 1920 KB Output is correct
33 Correct 15 ms 1920 KB Output is correct
34 Correct 15 ms 1920 KB Output is correct
35 Correct 9 ms 1152 KB Output is correct
36 Correct 9 ms 1152 KB Output is correct
37 Correct 10 ms 1152 KB Output is correct
38 Correct 7 ms 896 KB Output is correct
39 Correct 8 ms 896 KB Output is correct
40 Correct 20 ms 2304 KB Output is correct
41 Correct 8 ms 896 KB Output is correct
42 Correct 19 ms 2304 KB Output is correct
43 Correct 19 ms 2304 KB Output is correct
44 Correct 40 ms 3488 KB Output is correct
45 Correct 4 ms 384 KB Output is correct
46 Correct 22 ms 2432 KB Output is correct
47 Incorrect 52 ms 5368 KB Output isn't correct
48 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 5 ms 384 KB Output is correct
2 Correct 4 ms 384 KB Output is correct
3 Correct 12 ms 1536 KB Output is correct
4 Correct 11 ms 1536 KB Output is correct
5 Correct 11 ms 1664 KB Output is correct
6 Correct 14 ms 1536 KB Output is correct
7 Correct 11 ms 1664 KB Output is correct
8 Correct 6 ms 768 KB Output is correct
9 Correct 5 ms 384 KB Output is correct
10 Correct 6 ms 768 KB Output is correct
11 Correct 11 ms 1664 KB Output is correct
12 Correct 11 ms 1664 KB Output is correct
13 Correct 5 ms 384 KB Output is correct
14 Correct 10 ms 1536 KB Output is correct
15 Correct 4 ms 384 KB Output is correct
16 Correct 13 ms 1536 KB Output is correct
17 Correct 4 ms 384 KB Output is correct
18 Correct 11 ms 1536 KB Output is correct
19 Correct 6 ms 768 KB Output is correct
20 Correct 9 ms 1280 KB Output is correct
21 Correct 9 ms 1280 KB Output is correct
22 Correct 6 ms 768 KB Output is correct
23 Correct 16 ms 1792 KB Output is correct
24 Correct 6 ms 768 KB Output is correct
25 Correct 14 ms 1792 KB Output is correct
26 Correct 14 ms 1664 KB Output is correct
27 Correct 14 ms 2048 KB Output is correct
28 Correct 15 ms 1664 KB Output is correct
29 Correct 13 ms 1792 KB Output is correct
30 Correct 16 ms 1920 KB Output is correct
31 Correct 15 ms 1920 KB Output is correct
32 Correct 15 ms 1920 KB Output is correct
33 Correct 15 ms 1920 KB Output is correct
34 Correct 15 ms 1920 KB Output is correct
35 Correct 9 ms 1152 KB Output is correct
36 Correct 9 ms 1152 KB Output is correct
37 Correct 10 ms 1152 KB Output is correct
38 Correct 7 ms 896 KB Output is correct
39 Correct 8 ms 896 KB Output is correct
40 Correct 20 ms 2304 KB Output is correct
41 Correct 8 ms 896 KB Output is correct
42 Correct 19 ms 2304 KB Output is correct
43 Correct 19 ms 2304 KB Output is correct
44 Correct 5 ms 384 KB Output is correct
45 Correct 428 ms 32900 KB Output is correct
46 Correct 152 ms 17172 KB Output is correct
47 Correct 445 ms 35064 KB Output is correct
48 Correct 399 ms 32888 KB Output is correct
49 Correct 90 ms 12792 KB Output is correct
50 Correct 327 ms 32244 KB Output is correct
51 Correct 451 ms 35192 KB Output is correct
52 Correct 77 ms 12664 KB Output is correct
53 Correct 90 ms 12660 KB Output is correct
54 Correct 22 ms 4736 KB Output is correct
55 Correct 332 ms 32116 KB Output is correct
56 Correct 59 ms 9344 KB Output is correct
57 Correct 76 ms 12664 KB Output is correct
58 Correct 185 ms 15608 KB Output is correct
59 Correct 65 ms 9336 KB Output is correct
60 Correct 57 ms 9336 KB Output is correct
61 Correct 179 ms 15608 KB Output is correct
62 Correct 119 ms 12536 KB Output is correct
63 Correct 203 ms 17528 KB Output is correct
64 Correct 61 ms 9336 KB Output is correct
65 Correct 238 ms 21244 KB Output is correct
66 Correct 116 ms 12408 KB Output is correct
67 Correct 203 ms 17528 KB Output is correct
68 Correct 240 ms 21112 KB Output is correct
69 Correct 239 ms 21240 KB Output is correct
70 Correct 133 ms 15352 KB Output is correct
71 Correct 372 ms 23288 KB Output is correct
72 Correct 171 ms 17148 KB Output is correct
73 Correct 375 ms 31480 KB Output is correct
74 Correct 136 ms 15356 KB Output is correct
75 Correct 114 ms 11640 KB Output is correct
76 Correct 200 ms 17272 KB Output is correct
77 Correct 412 ms 31480 KB Output is correct
78 Correct 167 ms 15864 KB Output is correct
79 Correct 114 ms 11512 KB Output is correct
80 Correct 40 ms 5760 KB Output is correct
81 Correct 194 ms 15836 KB Output is correct
82 Correct 251 ms 21880 KB Output is correct
83 Correct 42 ms 5752 KB Output is correct
84 Correct 256 ms 22904 KB Output is correct