답안 #240152

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
240152 2020-06-18T08:21:21 Z IgorI Political Development (BOI17_politicaldevelopment) C++17
39 / 100
481 ms 35268 KB
const int LG = 21;
const int N = 400030;
const long long MOD = 998244353;
const long long INF = 1e9;
const long long INFLL = 1e18;

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef vector<int> vi;
typedef vector<vector<int> > vvi;
typedef vector<ll> vll;

#define forn(i, n) for (int (i) = 0; (i) != (n); (i)++)
#define all(v) (v).begin(), (v).end()
#define rall(v) (v).rbegin(), (v).rend()
#define popcount(x) __builtin_popcount(x)
#define popcountll(x) __builtin_popcountll(x)
#define fi first
#define se second
#define re return
#define pb push_back
#define uniq(x) sort(all(x)); (x).resize(unique(all(x)) - (x).begin())

#ifdef LOCAL
#define dbg(x) cerr << __LINE__ << " " << #x << " " << x << endl
#define ln cerr << __LINE__ << endl
#else
#define dbg(x) void(0)
#define ln void(0)
#endif // LOCAL

int cx[4] = {-1, 0, 1, 0};
int cy[4] = {0, -1, 0, 1};
string Yes[2] = {"No", "Yes"};
string YES[2] = {"NO", "YES"};

ll inq(ll x, ll y)
{
    if (!y) re 1 % MOD;
    ll l = inq(x, y / 2);
    if (y % 2) re l * l % MOD * x % MOD;
    re l * l % MOD;
}

ll rev(ll x)
{
    return inq(x, MOD - 2);
}

bool __precomputed_combinatorics = 0;
vector<ll> __fact, __ufact, __rev;

void __precompute_combinatorics()
{
    __precomputed_combinatorics = 1;
    __fact.resize(N);
    __ufact.resize(N);
    __rev.resize(N);
    __rev[1] = 1;
    for (int i = 2; i < N; i++) __rev[i] = MOD - __rev[MOD % i] * (MOD / i) % MOD;
    __fact[0] = 1, __ufact[0] = 1;
    for (int i = 1; i < N; i++) __fact[i] = __fact[i - 1] * i % MOD, __ufact[i] = __ufact[i - 1] * __rev[i] % MOD;
}

ll fact(int x)
{
    if (!__precomputed_combinatorics) __precompute_combinatorics();
    return __fact[x];
}

ll cnk(int n, int k)
{
    if (k < 0 || k > n) return 0;
    if (!__precomputed_combinatorics) __precompute_combinatorics();
    return __fact[n] * __ufact[n - k] % MOD * __ufact[k] % MOD;
}

int Root(int x, vector<int> &root)
{
    if (x == root[x]) return x;
    return root[x] = Root(root[x], root);
}

void Merge(int v, int u, vector<int> &root, vector<int> &sz)
{
    v = Root(v, root), u = Root(u, root);
    if (v == u) return;
    if (sz[v] < sz[u])
    {
        sz[u] += sz[v];
        root[v] = u;
    }
    else
    {
        sz[v] += sz[u];
        root[u] = v;
    }
}

int ok(int x, int n)
{
    return 0 <= x && x < n;
}

void bfs(int v, vi &dist, vector<vi> &graph)
{
    fill(all(dist), -1);
    dist[v] = 0;
    vi q = {v};
    for (int i = 0; i < q.size(); i++)
    {
        for (auto u : graph[q[i]])
        {
            if (dist[u] == -1)
            {
                dist[u] = dist[q[i]] + 1;
                q.push_back(u);
            }
        }
    }
}

vector<int> z_func(string &s)
{
    vector<int> z(s.size());
    z[0] = s.size();
    int L = 0, R = 0;
    for (int i = 1; i < s.size(); i++)
    {
        z[i] = max(0, min(z[i - L], R - i));
        while (i + z[i] < s.size() && s[i + z[i]] == s[z[i]]) z[i]++;
        if (i + z[i] > R)
        {
            R = i + z[i];
            L = i;
        }
    }
    return z;
}

vector<int> p_func(string &s)
{
    vector<int> p(s.size());
    for (int i = 1; i < s.size(); i++)
    {
        int j = p[i - 1];
        while (j > 0 && s[i] != s[j])
            j = p[j - 1];
        if (s[i] == s[j])
            j++;
        p[i] = j;
    }
    return p;
}

vector<int> d1_func(string &s)
{
    vector<int> d1(s.size());
    int L = 0, R = -1;
    for (int i = 0; i < s.size(); i++)
    {
        int k = 0;
        if (i <= R) k = min(R - i + 1, d1[R - i + L]);
        while (i + k < s.size() && i - k >= 0 && s[i - k] == s[i + k])
            k++;
        d1[i] = k--;
        if (i + k > R)
        {
            L = i - k;
            R = i + k;
        }
    }
    return d1;
}

vector<int> d2_func(string &s)
{
    vector<int> d2(s.size());
    int L = 0, R = -1;
    for (int i = 1; i < s.size(); i++)
    {
        int k = 0;
        if (i <= R) k = min(R - i + 1, d2[R - i + L + 1]);
        while (i + k < s.size() && i - k - 1 >= 0 && s[i - k - 1] == s[i + k])
            k++;
        d2[i] = k--;
        if (i + k > R)
        {
            L = i - k - 1;
            R = i + k;
        }
    }
    return d2;
}

ll log10(ll x)
{
    if (x < 10) re 1;
    re 1 + log10(x / 10);
}

ll ds(ll x)
{
    if (x < 10) return x;
    re x % 10 + ds(x / 10);
}

double sqr(double x)
{
    return x * x;
}

bool in(int bit, int mask)
{
    return (mask & (1 << bit)) > 0;
}

void Del(vector<int> &v, int pos)
{
    swap(v[pos], v[v.size() - 1]);
    v.pop_back();
}

long long g(vector<long long> &p, int pos)
{
    if (ok(pos, p.size())) return p[pos];
    if (pos < 0 || p.size() == 0) return 0;
    return p.back();
}

int g(vector<int> &p, int pos)
{
    if (ok(pos, p.size())) return p[pos];
    if (pos < 0 || p.size() == 0) return 0;
    return p.back();
}

void update(vector<int> &V, vector<int> &isact, int &ans, map<pii, int> &mm, vvi &graph)
{
    for (auto x : V)
    {
        vector<int> v;
        for (auto u : graph[x])
        {
            if (isact[u])
                v.push_back(u);
        }
        forn(mask, (1 << v.size()))
        {
            if (popcount(mask) + 1 < ans) continue;
            int t = 1;
            for (int i = 0; t && i < v.size(); i++) for (int j = i + 1; t && j < v.size(); j++) if (in(i, mask) && in(j, mask))
            {
                if (mm[{v[i], v[j]}] == 0) t = 0;
                break;
            }
            if (t) ans = max(ans, popcount(mask) + 1);
        }
    }
}

signed main()
{
    ios_base::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    int n, k;
    cin >> n >> k;
    vector<vector<int> > graph(n);
    map<pii, int> mm;
    forn(i, n)
    {
        int s;
        cin >> s;
        forn(j, s)
        {
            int a;
            cin >> a;
            graph[i].push_back(a);
            mm[{i, a}] = 1;
        }
    }
    set<pair<int, int> > deg_act;
    vector<int> isact(n, 1);
    vector<int> deg(n, 1);
    for (int i = 0; i < n; i++)
    {
        deg_act.insert({graph[i].size(), i});
        deg[i] = graph[i].size();
    }
    int ans = 1;
    while (deg_act.size())
    {
        vector<int> vertices;
        auto it = deg_act.begin();
        while (1)
        {
            if (it == deg_act.end()) break;
            pii x = *it;
            if (x.first != (*deg_act.begin()).first) break;
            vertices.push_back(x.second);
            it++;
        }
        update(vertices, isact, ans, mm, graph);
        for (auto x : vertices)
        {
            isact[x] = 0;
            deg_act.erase({deg[x], x});
            for (auto u : graph[x])
            {
                if (isact[u])
                {
                    deg_act.erase({deg[u], u});
                    deg[u]--;
                    deg_act.insert({deg[u], u});
                }
            }
        }
    }
    cout << ans;
}

/* Note:
Check constants at the beginning of the code.
    N is set to 4e5 but be careful in problems with large constant factor.
    Setting N in every problem is more effective.
Check corner cases.
    N = 1
No def int long long for now.
Add something here.
*/

Compilation message

politicaldevelopment.cpp: In function 'void bfs(int, vi&, std::vector<std::vector<int> >&)':
politicaldevelopment.cpp:115:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (int i = 0; i < q.size(); i++)
                     ~~^~~~~~~~~~
politicaldevelopment.cpp: In function 'std::vector<int> z_func(std::__cxx11::string&)':
politicaldevelopment.cpp:133:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (int i = 1; i < s.size(); i++)
                     ~~^~~~~~~~~~
politicaldevelopment.cpp:136:25: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
         while (i + z[i] < s.size() && s[i + z[i]] == s[z[i]]) z[i]++;
                ~~~~~~~~~^~~~~~~~~~
politicaldevelopment.cpp: In function 'std::vector<int> p_func(std::__cxx11::string&)':
politicaldevelopment.cpp:149:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (int i = 1; i < s.size(); i++)
                     ~~^~~~~~~~~~
politicaldevelopment.cpp: In function 'std::vector<int> d1_func(std::__cxx11::string&)':
politicaldevelopment.cpp:165:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (int i = 0; i < s.size(); i++)
                     ~~^~~~~~~~~~
politicaldevelopment.cpp:169:22: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
         while (i + k < s.size() && i - k >= 0 && s[i - k] == s[i + k])
                ~~~~~~^~~~~~~~~~
politicaldevelopment.cpp: In function 'std::vector<int> d2_func(std::__cxx11::string&)':
politicaldevelopment.cpp:185:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (int i = 1; i < s.size(); i++)
                     ~~^~~~~~~~~~
politicaldevelopment.cpp:189:22: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
         while (i + k < s.size() && i - k - 1 >= 0 && s[i - k - 1] == s[i + k])
                ~~~~~~^~~~~~~~~~
politicaldevelopment.cpp: In function 'void update(std::vector<int>&, std::vector<int>&, int&, std::map<std::pair<int, int>, int>&, vvi&)':
politicaldevelopment.cpp:257:36: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
             for (int i = 0; t && i < v.size(); i++) for (int j = i + 1; t && j < v.size(); j++) if (in(i, mask) && in(j, mask))
                                  ~~^~~~~~~~~~
politicaldevelopment.cpp:257:80: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
             for (int i = 0; t && i < v.size(); i++) for (int j = i + 1; t && j < v.size(); j++) if (in(i, mask) && in(j, mask))
                                                                              ~~^~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 5 ms 256 KB Output is correct
2 Correct 4 ms 384 KB Output is correct
3 Correct 12 ms 1536 KB Output is correct
4 Correct 10 ms 1408 KB Output is correct
5 Correct 11 ms 1536 KB Output is correct
6 Correct 11 ms 1536 KB Output is correct
7 Correct 11 ms 1664 KB Output is correct
8 Correct 6 ms 768 KB Output is correct
9 Correct 4 ms 384 KB Output is correct
10 Correct 6 ms 768 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 5 ms 256 KB Output is correct
2 Correct 4 ms 384 KB Output is correct
3 Correct 12 ms 1536 KB Output is correct
4 Correct 10 ms 1408 KB Output is correct
5 Correct 11 ms 1536 KB Output is correct
6 Correct 11 ms 1536 KB Output is correct
7 Correct 11 ms 1664 KB Output is correct
8 Correct 6 ms 768 KB Output is correct
9 Correct 4 ms 384 KB Output is correct
10 Correct 6 ms 768 KB Output is correct
11 Correct 10 ms 1664 KB Output is correct
12 Correct 11 ms 1536 KB Output is correct
13 Correct 5 ms 384 KB Output is correct
14 Correct 10 ms 1536 KB Output is correct
15 Correct 4 ms 384 KB Output is correct
16 Correct 11 ms 1536 KB Output is correct
17 Correct 5 ms 384 KB Output is correct
18 Correct 11 ms 1536 KB Output is correct
19 Correct 6 ms 768 KB Output is correct
20 Correct 9 ms 1280 KB Output is correct
21 Correct 9 ms 1280 KB Output is correct
22 Correct 6 ms 768 KB Output is correct
23 Correct 15 ms 1792 KB Output is correct
24 Correct 6 ms 768 KB Output is correct
25 Correct 15 ms 1792 KB Output is correct
26 Correct 13 ms 1664 KB Output is correct
27 Correct 14 ms 1792 KB Output is correct
28 Correct 14 ms 1664 KB Output is correct
29 Correct 15 ms 1920 KB Output is correct
30 Correct 14 ms 1920 KB Output is correct
31 Correct 19 ms 1920 KB Output is correct
32 Correct 15 ms 1920 KB Output is correct
33 Correct 15 ms 1920 KB Output is correct
34 Correct 15 ms 1920 KB Output is correct
35 Correct 9 ms 1152 KB Output is correct
36 Correct 9 ms 1152 KB Output is correct
37 Correct 9 ms 1152 KB Output is correct
38 Correct 7 ms 896 KB Output is correct
39 Correct 7 ms 896 KB Output is correct
40 Correct 21 ms 2432 KB Output is correct
41 Correct 8 ms 896 KB Output is correct
42 Correct 19 ms 2432 KB Output is correct
43 Correct 19 ms 2432 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 6 ms 768 KB Output is correct
2 Correct 4 ms 384 KB Output is correct
3 Incorrect 5 ms 384 KB Output isn't correct
4 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 5 ms 256 KB Output is correct
2 Correct 4 ms 384 KB Output is correct
3 Correct 12 ms 1536 KB Output is correct
4 Correct 10 ms 1408 KB Output is correct
5 Correct 11 ms 1536 KB Output is correct
6 Correct 11 ms 1536 KB Output is correct
7 Correct 11 ms 1664 KB Output is correct
8 Correct 6 ms 768 KB Output is correct
9 Correct 4 ms 384 KB Output is correct
10 Correct 6 ms 768 KB Output is correct
11 Correct 10 ms 1664 KB Output is correct
12 Correct 11 ms 1536 KB Output is correct
13 Correct 5 ms 384 KB Output is correct
14 Correct 10 ms 1536 KB Output is correct
15 Correct 4 ms 384 KB Output is correct
16 Correct 11 ms 1536 KB Output is correct
17 Correct 5 ms 384 KB Output is correct
18 Correct 11 ms 1536 KB Output is correct
19 Correct 6 ms 768 KB Output is correct
20 Correct 9 ms 1280 KB Output is correct
21 Correct 9 ms 1280 KB Output is correct
22 Correct 6 ms 768 KB Output is correct
23 Correct 15 ms 1792 KB Output is correct
24 Correct 6 ms 768 KB Output is correct
25 Correct 15 ms 1792 KB Output is correct
26 Correct 13 ms 1664 KB Output is correct
27 Correct 14 ms 1792 KB Output is correct
28 Correct 14 ms 1664 KB Output is correct
29 Correct 15 ms 1920 KB Output is correct
30 Correct 14 ms 1920 KB Output is correct
31 Correct 19 ms 1920 KB Output is correct
32 Correct 15 ms 1920 KB Output is correct
33 Correct 15 ms 1920 KB Output is correct
34 Correct 15 ms 1920 KB Output is correct
35 Correct 9 ms 1152 KB Output is correct
36 Correct 9 ms 1152 KB Output is correct
37 Correct 9 ms 1152 KB Output is correct
38 Correct 7 ms 896 KB Output is correct
39 Correct 7 ms 896 KB Output is correct
40 Correct 21 ms 2432 KB Output is correct
41 Correct 8 ms 896 KB Output is correct
42 Correct 19 ms 2432 KB Output is correct
43 Correct 19 ms 2432 KB Output is correct
44 Correct 39 ms 3712 KB Output is correct
45 Correct 4 ms 384 KB Output is correct
46 Correct 21 ms 2560 KB Output is correct
47 Incorrect 47 ms 5624 KB Output isn't correct
48 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 5 ms 256 KB Output is correct
2 Correct 4 ms 384 KB Output is correct
3 Correct 12 ms 1536 KB Output is correct
4 Correct 10 ms 1408 KB Output is correct
5 Correct 11 ms 1536 KB Output is correct
6 Correct 11 ms 1536 KB Output is correct
7 Correct 11 ms 1664 KB Output is correct
8 Correct 6 ms 768 KB Output is correct
9 Correct 4 ms 384 KB Output is correct
10 Correct 6 ms 768 KB Output is correct
11 Correct 10 ms 1664 KB Output is correct
12 Correct 11 ms 1536 KB Output is correct
13 Correct 5 ms 384 KB Output is correct
14 Correct 10 ms 1536 KB Output is correct
15 Correct 4 ms 384 KB Output is correct
16 Correct 11 ms 1536 KB Output is correct
17 Correct 5 ms 384 KB Output is correct
18 Correct 11 ms 1536 KB Output is correct
19 Correct 6 ms 768 KB Output is correct
20 Correct 9 ms 1280 KB Output is correct
21 Correct 9 ms 1280 KB Output is correct
22 Correct 6 ms 768 KB Output is correct
23 Correct 15 ms 1792 KB Output is correct
24 Correct 6 ms 768 KB Output is correct
25 Correct 15 ms 1792 KB Output is correct
26 Correct 13 ms 1664 KB Output is correct
27 Correct 14 ms 1792 KB Output is correct
28 Correct 14 ms 1664 KB Output is correct
29 Correct 15 ms 1920 KB Output is correct
30 Correct 14 ms 1920 KB Output is correct
31 Correct 19 ms 1920 KB Output is correct
32 Correct 15 ms 1920 KB Output is correct
33 Correct 15 ms 1920 KB Output is correct
34 Correct 15 ms 1920 KB Output is correct
35 Correct 9 ms 1152 KB Output is correct
36 Correct 9 ms 1152 KB Output is correct
37 Correct 9 ms 1152 KB Output is correct
38 Correct 7 ms 896 KB Output is correct
39 Correct 7 ms 896 KB Output is correct
40 Correct 21 ms 2432 KB Output is correct
41 Correct 8 ms 896 KB Output is correct
42 Correct 19 ms 2432 KB Output is correct
43 Correct 19 ms 2432 KB Output is correct
44 Correct 5 ms 384 KB Output is correct
45 Correct 412 ms 33104 KB Output is correct
46 Correct 155 ms 17300 KB Output is correct
47 Correct 428 ms 35192 KB Output is correct
48 Correct 395 ms 33016 KB Output is correct
49 Correct 86 ms 12916 KB Output is correct
50 Correct 317 ms 32244 KB Output is correct
51 Correct 481 ms 35268 KB Output is correct
52 Correct 76 ms 12920 KB Output is correct
53 Correct 96 ms 12916 KB Output is correct
54 Correct 22 ms 4736 KB Output is correct
55 Correct 330 ms 32320 KB Output is correct
56 Correct 58 ms 9464 KB Output is correct
57 Correct 77 ms 12920 KB Output is correct
58 Correct 182 ms 15736 KB Output is correct
59 Correct 57 ms 9464 KB Output is correct
60 Correct 56 ms 9472 KB Output is correct
61 Correct 177 ms 15736 KB Output is correct
62 Correct 135 ms 12664 KB Output is correct
63 Correct 209 ms 17912 KB Output is correct
64 Correct 58 ms 9472 KB Output is correct
65 Correct 256 ms 21496 KB Output is correct
66 Correct 117 ms 12664 KB Output is correct
67 Correct 199 ms 17784 KB Output is correct
68 Correct 233 ms 21368 KB Output is correct
69 Correct 243 ms 21368 KB Output is correct
70 Correct 138 ms 15608 KB Output is correct
71 Correct 269 ms 23288 KB Output is correct
72 Correct 170 ms 17404 KB Output is correct
73 Correct 401 ms 31608 KB Output is correct
74 Correct 174 ms 15608 KB Output is correct
75 Correct 114 ms 11768 KB Output is correct
76 Correct 163 ms 17272 KB Output is correct
77 Correct 367 ms 31480 KB Output is correct
78 Correct 165 ms 16120 KB Output is correct
79 Correct 108 ms 11640 KB Output is correct
80 Correct 39 ms 5752 KB Output is correct
81 Correct 163 ms 15996 KB Output is correct
82 Correct 267 ms 22008 KB Output is correct
83 Correct 40 ms 5752 KB Output is correct
84 Correct 252 ms 23032 KB Output is correct