답안 #240138

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
240138 2020-06-18T07:28:36 Z IgorI Political Development (BOI17_politicaldevelopment) C++17
62 / 100
1002 ms 65656 KB
const int LG = 21;
const int N = 400030;
const long long MOD = 998244353;
const long long INF = 1e9;
const long long INFLL = 1e18;

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef vector<int> vi;
typedef vector<vector<int> > vvi;
typedef vector<ll> vll;

#define forn(i, n) for (int (i) = 0; (i) != (n); (i)++)
#define all(v) (v).begin(), (v).end()
#define rall(v) (v).rbegin(), (v).rend()
#define popcount(x) __builtin_popcount(x)
#define popcountll(x) __builtin_popcountll(x)
#define fi first
#define se second
#define re return
#define pb push_back
#define uniq(x) sort(all(x)); (x).resize(unique(all(x)) - (x).begin())

#ifdef LOCAL
#define dbg(x) cerr << __LINE__ << " " << #x << " " << x << endl
#define ln cerr << __LINE__ << endl
#else
#define dbg(x) void(0)
#define ln void(0)
#endif // LOCAL

int cx[4] = {-1, 0, 1, 0};
int cy[4] = {0, -1, 0, 1};
string Yes[2] = {"No", "Yes"};
string YES[2] = {"NO", "YES"};

ll inq(ll x, ll y)
{
    if (!y) re 1 % MOD;
    ll l = inq(x, y / 2);
    if (y % 2) re l * l % MOD * x % MOD;
    re l * l % MOD;
}

ll rev(ll x)
{
    return inq(x, MOD - 2);
}

bool __precomputed_combinatorics = 0;
vector<ll> __fact, __ufact, __rev;

void __precompute_combinatorics()
{
    __precomputed_combinatorics = 1;
    __fact.resize(N);
    __ufact.resize(N);
    __rev.resize(N);
    __rev[1] = 1;
    for (int i = 2; i < N; i++) __rev[i] = MOD - __rev[MOD % i] * (MOD / i) % MOD;
    __fact[0] = 1, __ufact[0] = 1;
    for (int i = 1; i < N; i++) __fact[i] = __fact[i - 1] * i % MOD, __ufact[i] = __ufact[i - 1] * __rev[i] % MOD;
}

ll fact(int x)
{
    if (!__precomputed_combinatorics) __precompute_combinatorics();
    return __fact[x];
}

ll cnk(int n, int k)
{
    if (k < 0 || k > n) return 0;
    if (!__precomputed_combinatorics) __precompute_combinatorics();
    return __fact[n] * __ufact[n - k] % MOD * __ufact[k] % MOD;
}

int Root(int x, vector<int> &root)
{
    if (x == root[x]) return x;
    return root[x] = Root(root[x], root);
}

void Merge(int v, int u, vector<int> &root, vector<int> &sz)
{
    v = Root(v, root), u = Root(u, root);
    if (v == u) return;
    if (sz[v] < sz[u])
    {
        sz[u] += sz[v];
        root[v] = u;
    }
    else
    {
        sz[v] += sz[u];
        root[u] = v;
    }
}

int ok(int x, int n)
{
    return 0 <= x && x < n;
}

void bfs(int v, vi &dist, vector<vi> &graph)
{
    fill(all(dist), -1);
    dist[v] = 0;
    vi q = {v};
    for (int i = 0; i < q.size(); i++)
    {
        for (auto u : graph[q[i]])
        {
            if (dist[u] == -1)
            {
                dist[u] = dist[q[i]] + 1;
                q.push_back(u);
            }
        }
    }
}

vector<int> z_func(string &s)
{
    vector<int> z(s.size());
    z[0] = s.size();
    int L = 0, R = 0;
    for (int i = 1; i < s.size(); i++)
    {
        z[i] = max(0, min(z[i - L], R - i));
        while (i + z[i] < s.size() && s[i + z[i]] == s[z[i]]) z[i]++;
        if (i + z[i] > R)
        {
            R = i + z[i];
            L = i;
        }
    }
    return z;
}

vector<int> p_func(string &s)
{
    vector<int> p(s.size());
    for (int i = 1; i < s.size(); i++)
    {
        int j = p[i - 1];
        while (j > 0 && s[i] != s[j])
            j = p[j - 1];
        if (s[i] == s[j])
            j++;
        p[i] = j;
    }
    return p;
}

vector<int> d1_func(string &s)
{
    vector<int> d1(s.size());
    int L = 0, R = -1;
    for (int i = 0; i < s.size(); i++)
    {
        int k = 0;
        if (i <= R) k = min(R - i + 1, d1[R - i + L]);
        while (i + k < s.size() && i - k >= 0 && s[i - k] == s[i + k])
            k++;
        d1[i] = k--;
        if (i + k > R)
        {
            L = i - k;
            R = i + k;
        }
    }
    return d1;
}

vector<int> d2_func(string &s)
{
    vector<int> d2(s.size());
    int L = 0, R = -1;
    for (int i = 1; i < s.size(); i++)
    {
        int k = 0;
        if (i <= R) k = min(R - i + 1, d2[R - i + L + 1]);
        while (i + k < s.size() && i - k - 1 >= 0 && s[i - k - 1] == s[i + k])
            k++;
        d2[i] = k--;
        if (i + k > R)
        {
            L = i - k - 1;
            R = i + k;
        }
    }
    return d2;
}

ll log10(ll x)
{
    if (x < 10) re 1;
    re 1 + log10(x / 10);
}

ll ds(ll x)
{
    if (x < 10) return x;
    re x % 10 + ds(x / 10);
}

double sqr(double x)
{
    return x * x;
}

bool in(int bit, int mask)
{
    return (mask & (1 << bit)) > 0;
}

void Del(vector<int> &v, int pos)
{
    swap(v[pos], v[v.size() - 1]);
    v.pop_back();
}

long long g(vector<long long> &p, int pos)
{
    if (ok(pos, p.size())) return p[pos];
    if (pos < 0 || p.size() == 0) return 0;
    return p.back();
}

int g(vector<int> &p, int pos)
{
    if (ok(pos, p.size())) return p[pos];
    if (pos < 0 || p.size() == 0) return 0;
    return p.back();
}

signed main()
{
    ios_base::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    int n, k;
    cin >> n >> k;
    vector<vector<int> > graph(n);
    map<pii, int> mm;
    forn(i, n)
    {
        int s;
        cin >> s;
        forn(j, s)
        {
            int a;
            cin >> a;
            graph[i].push_back(a);
            mm[{i, a}] = 1;
        }
    }
    set<pair<int, int> > deg_act;
    vector<int> isact(n, 1);
    vector<int> deg(n, 1);
    for (int i = 0; i < n; i++)
    {
        deg_act.insert({graph[i].size(), i});
        deg[i] = graph[i].size();
    }
    int ans = 1;
    while (deg_act.size())
    {
        pair<int, int> t = *deg_act.begin();
        deg_act.erase(t);
        int x = t.second;
        vector<int> v;
        for (auto u : graph[x])
        {
            if (isact[u])
                v.push_back(u);
        }
        //check
        forn(mask, (1 << v.size()))
        {
            if (popcount(mask) + 1 < ans) continue;
            int t = 1;
            for (int i = 0; t && i < v.size(); i++) for (int j = i + 1; t && j < v.size(); j++) if (in(i, mask) && in(j, mask))
            {
                if (mm[{v[i], v[j]}] == 0) t = 0;
                break;
            }
            if (t) ans = max(ans, popcount(mask) + 1);
        }
        //remove
        isact[x] = 0;
        for (auto u : v)
        {
            deg_act.erase({deg[u], u});
            deg[u]--;
            deg_act.insert({deg[u], u});
        }
    }
    cout << ans;
}

/* Note:
Check constants at the beginning of the code.
    N is set to 4e5 but be careful in problems with large constant factor.
    Setting N in every problem is more effective.
Check corner cases.
    N = 1
No def int long long for now.
Add something here.
*/

Compilation message

politicaldevelopment.cpp: In function 'void bfs(int, vi&, std::vector<std::vector<int> >&)':
politicaldevelopment.cpp:115:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (int i = 0; i < q.size(); i++)
                     ~~^~~~~~~~~~
politicaldevelopment.cpp: In function 'std::vector<int> z_func(std::__cxx11::string&)':
politicaldevelopment.cpp:133:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (int i = 1; i < s.size(); i++)
                     ~~^~~~~~~~~~
politicaldevelopment.cpp:136:25: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
         while (i + z[i] < s.size() && s[i + z[i]] == s[z[i]]) z[i]++;
                ~~~~~~~~~^~~~~~~~~~
politicaldevelopment.cpp: In function 'std::vector<int> p_func(std::__cxx11::string&)':
politicaldevelopment.cpp:149:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (int i = 1; i < s.size(); i++)
                     ~~^~~~~~~~~~
politicaldevelopment.cpp: In function 'std::vector<int> d1_func(std::__cxx11::string&)':
politicaldevelopment.cpp:165:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (int i = 0; i < s.size(); i++)
                     ~~^~~~~~~~~~
politicaldevelopment.cpp:169:22: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
         while (i + k < s.size() && i - k >= 0 && s[i - k] == s[i + k])
                ~~~~~~^~~~~~~~~~
politicaldevelopment.cpp: In function 'std::vector<int> d2_func(std::__cxx11::string&)':
politicaldevelopment.cpp:185:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (int i = 1; i < s.size(); i++)
                     ~~^~~~~~~~~~
politicaldevelopment.cpp:189:22: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
         while (i + k < s.size() && i - k - 1 >= 0 && s[i - k - 1] == s[i + k])
                ~~~~~~^~~~~~~~~~
politicaldevelopment.cpp: In function 'int main()':
politicaldevelopment.cpp:289:36: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
             for (int i = 0; t && i < v.size(); i++) for (int j = i + 1; t && j < v.size(); j++) if (in(i, mask) && in(j, mask))
                                  ~~^~~~~~~~~~
politicaldevelopment.cpp:289:80: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
             for (int i = 0; t && i < v.size(); i++) for (int j = i + 1; t && j < v.size(); j++) if (in(i, mask) && in(j, mask))
                                                                              ~~^~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 5 ms 384 KB Output is correct
2 Correct 5 ms 384 KB Output is correct
3 Correct 12 ms 1536 KB Output is correct
4 Correct 10 ms 1536 KB Output is correct
5 Correct 11 ms 1536 KB Output is correct
6 Correct 11 ms 1536 KB Output is correct
7 Correct 11 ms 1536 KB Output is correct
8 Correct 6 ms 768 KB Output is correct
9 Correct 5 ms 384 KB Output is correct
10 Correct 6 ms 768 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 5 ms 384 KB Output is correct
2 Correct 5 ms 384 KB Output is correct
3 Correct 12 ms 1536 KB Output is correct
4 Correct 10 ms 1536 KB Output is correct
5 Correct 11 ms 1536 KB Output is correct
6 Correct 11 ms 1536 KB Output is correct
7 Correct 11 ms 1536 KB Output is correct
8 Correct 6 ms 768 KB Output is correct
9 Correct 5 ms 384 KB Output is correct
10 Correct 6 ms 768 KB Output is correct
11 Correct 11 ms 1536 KB Output is correct
12 Correct 11 ms 1536 KB Output is correct
13 Correct 4 ms 384 KB Output is correct
14 Correct 11 ms 1536 KB Output is correct
15 Correct 5 ms 384 KB Output is correct
16 Correct 14 ms 1536 KB Output is correct
17 Correct 5 ms 384 KB Output is correct
18 Correct 11 ms 1536 KB Output is correct
19 Correct 7 ms 896 KB Output is correct
20 Correct 9 ms 1280 KB Output is correct
21 Correct 9 ms 1280 KB Output is correct
22 Correct 6 ms 768 KB Output is correct
23 Correct 13 ms 1792 KB Output is correct
24 Correct 6 ms 768 KB Output is correct
25 Correct 16 ms 1792 KB Output is correct
26 Correct 12 ms 1664 KB Output is correct
27 Correct 11 ms 1536 KB Output is correct
28 Correct 13 ms 1664 KB Output is correct
29 Correct 10 ms 1536 KB Output is correct
30 Correct 14 ms 1792 KB Output is correct
31 Correct 14 ms 1792 KB Output is correct
32 Correct 13 ms 1920 KB Output is correct
33 Correct 14 ms 1792 KB Output is correct
34 Correct 14 ms 1792 KB Output is correct
35 Correct 9 ms 1152 KB Output is correct
36 Correct 9 ms 1152 KB Output is correct
37 Correct 9 ms 1152 KB Output is correct
38 Correct 8 ms 896 KB Output is correct
39 Correct 8 ms 896 KB Output is correct
40 Correct 19 ms 2432 KB Output is correct
41 Correct 7 ms 896 KB Output is correct
42 Correct 20 ms 2432 KB Output is correct
43 Correct 20 ms 2432 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 6 ms 768 KB Output is correct
2 Correct 5 ms 384 KB Output is correct
3 Correct 5 ms 384 KB Output is correct
4 Correct 5 ms 384 KB Output is correct
5 Correct 5 ms 384 KB Output is correct
6 Correct 5 ms 384 KB Output is correct
7 Correct 5 ms 384 KB Output is correct
8 Correct 5 ms 384 KB Output is correct
9 Correct 5 ms 384 KB Output is correct
10 Correct 5 ms 384 KB Output is correct
11 Correct 943 ms 65492 KB Output is correct
12 Correct 5 ms 384 KB Output is correct
13 Correct 951 ms 65532 KB Output is correct
14 Correct 5 ms 384 KB Output is correct
15 Correct 942 ms 65656 KB Output is correct
16 Correct 999 ms 65656 KB Output is correct
17 Correct 1002 ms 65528 KB Output is correct
18 Correct 941 ms 65512 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 5 ms 384 KB Output is correct
2 Correct 5 ms 384 KB Output is correct
3 Correct 12 ms 1536 KB Output is correct
4 Correct 10 ms 1536 KB Output is correct
5 Correct 11 ms 1536 KB Output is correct
6 Correct 11 ms 1536 KB Output is correct
7 Correct 11 ms 1536 KB Output is correct
8 Correct 6 ms 768 KB Output is correct
9 Correct 5 ms 384 KB Output is correct
10 Correct 6 ms 768 KB Output is correct
11 Correct 11 ms 1536 KB Output is correct
12 Correct 11 ms 1536 KB Output is correct
13 Correct 4 ms 384 KB Output is correct
14 Correct 11 ms 1536 KB Output is correct
15 Correct 5 ms 384 KB Output is correct
16 Correct 14 ms 1536 KB Output is correct
17 Correct 5 ms 384 KB Output is correct
18 Correct 11 ms 1536 KB Output is correct
19 Correct 7 ms 896 KB Output is correct
20 Correct 9 ms 1280 KB Output is correct
21 Correct 9 ms 1280 KB Output is correct
22 Correct 6 ms 768 KB Output is correct
23 Correct 13 ms 1792 KB Output is correct
24 Correct 6 ms 768 KB Output is correct
25 Correct 16 ms 1792 KB Output is correct
26 Correct 12 ms 1664 KB Output is correct
27 Correct 11 ms 1536 KB Output is correct
28 Correct 13 ms 1664 KB Output is correct
29 Correct 10 ms 1536 KB Output is correct
30 Correct 14 ms 1792 KB Output is correct
31 Correct 14 ms 1792 KB Output is correct
32 Correct 13 ms 1920 KB Output is correct
33 Correct 14 ms 1792 KB Output is correct
34 Correct 14 ms 1792 KB Output is correct
35 Correct 9 ms 1152 KB Output is correct
36 Correct 9 ms 1152 KB Output is correct
37 Correct 9 ms 1152 KB Output is correct
38 Correct 8 ms 896 KB Output is correct
39 Correct 8 ms 896 KB Output is correct
40 Correct 19 ms 2432 KB Output is correct
41 Correct 7 ms 896 KB Output is correct
42 Correct 20 ms 2432 KB Output is correct
43 Correct 20 ms 2432 KB Output is correct
44 Correct 31 ms 3712 KB Output is correct
45 Correct 5 ms 384 KB Output is correct
46 Correct 22 ms 2432 KB Output is correct
47 Incorrect 45 ms 5252 KB Output isn't correct
48 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 5 ms 384 KB Output is correct
2 Correct 5 ms 384 KB Output is correct
3 Correct 12 ms 1536 KB Output is correct
4 Correct 10 ms 1536 KB Output is correct
5 Correct 11 ms 1536 KB Output is correct
6 Correct 11 ms 1536 KB Output is correct
7 Correct 11 ms 1536 KB Output is correct
8 Correct 6 ms 768 KB Output is correct
9 Correct 5 ms 384 KB Output is correct
10 Correct 6 ms 768 KB Output is correct
11 Correct 11 ms 1536 KB Output is correct
12 Correct 11 ms 1536 KB Output is correct
13 Correct 4 ms 384 KB Output is correct
14 Correct 11 ms 1536 KB Output is correct
15 Correct 5 ms 384 KB Output is correct
16 Correct 14 ms 1536 KB Output is correct
17 Correct 5 ms 384 KB Output is correct
18 Correct 11 ms 1536 KB Output is correct
19 Correct 7 ms 896 KB Output is correct
20 Correct 9 ms 1280 KB Output is correct
21 Correct 9 ms 1280 KB Output is correct
22 Correct 6 ms 768 KB Output is correct
23 Correct 13 ms 1792 KB Output is correct
24 Correct 6 ms 768 KB Output is correct
25 Correct 16 ms 1792 KB Output is correct
26 Correct 12 ms 1664 KB Output is correct
27 Correct 11 ms 1536 KB Output is correct
28 Correct 13 ms 1664 KB Output is correct
29 Correct 10 ms 1536 KB Output is correct
30 Correct 14 ms 1792 KB Output is correct
31 Correct 14 ms 1792 KB Output is correct
32 Correct 13 ms 1920 KB Output is correct
33 Correct 14 ms 1792 KB Output is correct
34 Correct 14 ms 1792 KB Output is correct
35 Correct 9 ms 1152 KB Output is correct
36 Correct 9 ms 1152 KB Output is correct
37 Correct 9 ms 1152 KB Output is correct
38 Correct 8 ms 896 KB Output is correct
39 Correct 8 ms 896 KB Output is correct
40 Correct 19 ms 2432 KB Output is correct
41 Correct 7 ms 896 KB Output is correct
42 Correct 20 ms 2432 KB Output is correct
43 Correct 20 ms 2432 KB Output is correct
44 Correct 5 ms 384 KB Output is correct
45 Correct 481 ms 34808 KB Output is correct
46 Correct 154 ms 16376 KB Output is correct
47 Correct 472 ms 35196 KB Output is correct
48 Correct 482 ms 34664 KB Output is correct
49 Correct 91 ms 12892 KB Output is correct
50 Correct 344 ms 34040 KB Output is correct
51 Correct 471 ms 34856 KB Output is correct
52 Correct 81 ms 12920 KB Output is correct
53 Correct 93 ms 13012 KB Output is correct
54 Correct 22 ms 4352 KB Output is correct
55 Correct 366 ms 34128 KB Output is correct
56 Correct 54 ms 9340 KB Output is correct
57 Correct 78 ms 13048 KB Output is correct
58 Correct 153 ms 16248 KB Output is correct
59 Correct 54 ms 9336 KB Output is correct
60 Correct 79 ms 9336 KB Output is correct
61 Correct 129 ms 16120 KB Output is correct
62 Correct 112 ms 12792 KB Output is correct
63 Correct 203 ms 18552 KB Output is correct
64 Correct 78 ms 9312 KB Output is correct
65 Correct 277 ms 22136 KB Output is correct
66 Correct 102 ms 12792 KB Output is correct
67 Correct 204 ms 18556 KB Output is correct
68 Correct 260 ms 23032 KB Output is correct
69 Correct 236 ms 22264 KB Output is correct
70 Correct 97 ms 12792 KB Output is correct
71 Correct 257 ms 23288 KB Output is correct
72 Correct 198 ms 17784 KB Output is correct
73 Correct 348 ms 29048 KB Output is correct
74 Correct 96 ms 12792 KB Output is correct
75 Correct 115 ms 10744 KB Output is correct
76 Correct 183 ms 17776 KB Output is correct
77 Correct 360 ms 29048 KB Output is correct
78 Correct 164 ms 14840 KB Output is correct
79 Correct 117 ms 10872 KB Output is correct
80 Correct 42 ms 5368 KB Output is correct
81 Correct 175 ms 14712 KB Output is correct
82 Correct 258 ms 21752 KB Output is correct
83 Correct 43 ms 5372 KB Output is correct
84 Correct 264 ms 21752 KB Output is correct