//#pragma GCC optimize("Ofast")
//#pragma GCC target("avx,avx2,fma")
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <vector>
#include <algorithm>
#include <fstream>
#include <queue>
#include <deque>
#include <iomanip>
#include <cmath>
#include <set>
#include <stack>
#include <map>
#include <unordered_map>
#include "factories.h"
#define FOR(i,n) for(int i=0;i<n;i++)
#define FORE(i,a,b) for(int i=a;i<=b;i++)
#define ll long long
#define ld long double
#define vi vector<int>
#define pb push_back
#define ff first
#define ss second
#define il pair<int,ll>
#define ii pair<int,int>
#define lii pair<pair<ll,int>,il>
#define iii pair<int,ii>
#define iiii pair<iii,int>
#define pll pair<ll,ll>
#define plll pair<ll,pll>
#define vv vector
#define endl '\n'
using namespace std;
const ll INF = 1e18;
const int MAXN = 5e5+5;
const int LOGN = 24;
int n;
// ==================== Sparse table and basic graph setup ============================
vv<ii> g[MAXN];
ll dist[MAXN];
int depth[MAXN];
ii minCost[LOGN][4*MAXN];
int euler[MAXN*2];
int tin[MAXN*2];
int tout[MAXN*2];
int T = 0;
void dfs_init_setup_lca(int node,int p = -1){
tin[node] = T;
tout[node] = T;
euler[T++] = node;
for(auto e: g[node]){
if(e.ff == p)continue;
dist[e.ff] = e.ss + dist[node];
depth[e.ff] = 1+ depth[node];
dfs_init_setup_lca(e.ff,node);
tout[node] = T;
euler[T++] = node;
}
}
inline ii combine(ii a,ii b){
if(a.ff <= b.ff)return a;
else return b;
}
int _log[4*MAXN+1];
void calculateSparseTables(){
_log[1] = 0;
for (int i = 2; i <= T; i++)
_log[i] = _log[i/2] + 1;
FOR(i,LOGN){
FOR(j,T){
if(i == 0){
minCost[i][j] = {depth[euler[j]],euler[j]};
continue;
}
int add = (1<<(i-1));
int nxt = j+add;
if(nxt >= T){
minCost[i][j] = minCost[i-1][j];
}else{
ii a = minCost[i-1][j];
ii b = minCost[i-1][nxt];
minCost[i][j] = combine(a,b);
}
}
}
}
int LCA(int a,int b){
if(a == b)return a;
if(tin[a] > tin[b])swap(a,b);
//if(tout[a] > tout[b])return a;
int L = tin[a];
int R = tin[b];
int j = _log[R - L + 1];
return combine(minCost[j][L], minCost[j][R - (1 << j) + 1]).ss;
}
ll distance(int a,int b){
return dist[a] + dist[b] - 2*dist[LCA(a,b)];
}
// ==================== Centroid tree construction ====================================
bool blocked[MAXN];
int subtree[MAXN];
int centroidParent[MAXN];
void dfs_centroid_setup(int node,int p = -1){
subtree[node] = 1;
for(auto e: g[node]){
if(blocked[e.ff] or e.ff == p)continue;
dfs_centroid_setup(e.ff,node);
subtree[node] += subtree[e.ff];
}
}
int getCentroid(int node,int tot,int p = -1){
for(auto e: g[node]){
if(blocked[e.ff] or e.ff == p)continue;
if(2*subtree[e.ff] > tot)return getCentroid(e.ff,tot,node);
}
return node;
}
queue<ii> subtrees_remaining;
void processCentroid(int node,int par){
dfs_centroid_setup(node);
int c = getCentroid(node,subtree[node]);
centroidParent[c] = par;
for(auto e: g[c]){
if(blocked[e.ff])continue;
subtrees_remaining.push({e.ff,c});
}
blocked[c] = 1;
}
void centroidDecomp(){
subtrees_remaining.push({0,-1});
while(!subtrees_remaining.empty()){
auto e = subtrees_remaining.front();subtrees_remaining.pop();
processCentroid(e.ff,e.ss);
}
}
// ==================== Problem Specific Stuff =======================================
ll ans[MAXN];
void Init(int n, int A[], int B[], int D[]) {
::n = n;
FOR(i,n-1){
g[A[i]].pb({B[i],D[i]});
g[B[i]].pb({A[i],D[i]});
}
dfs_init_setup_lca(0);
calculateSparseTables();
centroidDecomp();
//cout << ctr << endl;
FOR(i,n)ans[i] = INF;
// FOR(i,n){
// FOR(j,i)cout << j << " " << i << " " << LCA(j,i) << endl;
// }
}
ll Query(int S, int X[], int T, int Y[]) {
vv<int> affectedNodes;
//cout << "LCA: " << LCA(2,5) << " " << distance(2,5) << endl;
FOR(i,S){
int item = X[i];
while(item != -1){
affectedNodes.pb(item);
ans[item] = min(ans[item],distance(item,X[i]));
item = centroidParent[item];
}
}
ll d = INF;
FOR(i,T){
int item = Y[i];
while(item != -1){
d = min(d,distance(item,Y[i])+ans[item]);
item = centroidParent[item];
}
}
for(auto e: affectedNodes)ans[e] = INF;
return d;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
22 ms |
12800 KB |
Output is correct |
2 |
Correct |
489 ms |
22904 KB |
Output is correct |
3 |
Correct |
590 ms |
22776 KB |
Output is correct |
4 |
Correct |
596 ms |
23364 KB |
Output is correct |
5 |
Correct |
693 ms |
23168 KB |
Output is correct |
6 |
Correct |
347 ms |
22828 KB |
Output is correct |
7 |
Correct |
581 ms |
22776 KB |
Output is correct |
8 |
Correct |
602 ms |
22880 KB |
Output is correct |
9 |
Correct |
685 ms |
23248 KB |
Output is correct |
10 |
Correct |
342 ms |
22908 KB |
Output is correct |
11 |
Correct |
580 ms |
22748 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
14 ms |
12672 KB |
Output is correct |
2 |
Correct |
2899 ms |
258572 KB |
Output is correct |
3 |
Correct |
4247 ms |
278284 KB |
Output is correct |
4 |
Correct |
1124 ms |
280792 KB |
Output is correct |
5 |
Correct |
6158 ms |
301340 KB |
Output is correct |
6 |
Correct |
4629 ms |
276340 KB |
Output is correct |
7 |
Correct |
2127 ms |
84004 KB |
Output is correct |
8 |
Correct |
607 ms |
85532 KB |
Output is correct |
9 |
Correct |
2374 ms |
87824 KB |
Output is correct |
10 |
Correct |
2098 ms |
85440 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
22 ms |
12800 KB |
Output is correct |
2 |
Correct |
489 ms |
22904 KB |
Output is correct |
3 |
Correct |
590 ms |
22776 KB |
Output is correct |
4 |
Correct |
596 ms |
23364 KB |
Output is correct |
5 |
Correct |
693 ms |
23168 KB |
Output is correct |
6 |
Correct |
347 ms |
22828 KB |
Output is correct |
7 |
Correct |
581 ms |
22776 KB |
Output is correct |
8 |
Correct |
602 ms |
22880 KB |
Output is correct |
9 |
Correct |
685 ms |
23248 KB |
Output is correct |
10 |
Correct |
342 ms |
22908 KB |
Output is correct |
11 |
Correct |
580 ms |
22748 KB |
Output is correct |
12 |
Correct |
14 ms |
12672 KB |
Output is correct |
13 |
Correct |
2899 ms |
258572 KB |
Output is correct |
14 |
Correct |
4247 ms |
278284 KB |
Output is correct |
15 |
Correct |
1124 ms |
280792 KB |
Output is correct |
16 |
Correct |
6158 ms |
301340 KB |
Output is correct |
17 |
Correct |
4629 ms |
276340 KB |
Output is correct |
18 |
Correct |
2127 ms |
84004 KB |
Output is correct |
19 |
Correct |
607 ms |
85532 KB |
Output is correct |
20 |
Correct |
2374 ms |
87824 KB |
Output is correct |
21 |
Correct |
2098 ms |
85440 KB |
Output is correct |
22 |
Correct |
3893 ms |
278652 KB |
Output is correct |
23 |
Correct |
4370 ms |
272804 KB |
Output is correct |
24 |
Correct |
5730 ms |
271540 KB |
Output is correct |
25 |
Correct |
5811 ms |
275292 KB |
Output is correct |
26 |
Correct |
5689 ms |
265124 KB |
Output is correct |
27 |
Correct |
7195 ms |
291300 KB |
Output is correct |
28 |
Correct |
1334 ms |
269564 KB |
Output is correct |
29 |
Correct |
5892 ms |
276752 KB |
Output is correct |
30 |
Correct |
6274 ms |
277032 KB |
Output is correct |
31 |
Correct |
6333 ms |
269452 KB |
Output is correct |
32 |
Correct |
2284 ms |
95136 KB |
Output is correct |
33 |
Correct |
567 ms |
86120 KB |
Output is correct |
34 |
Correct |
1494 ms |
81784 KB |
Output is correct |
35 |
Correct |
1367 ms |
81784 KB |
Output is correct |
36 |
Correct |
1835 ms |
82388 KB |
Output is correct |
37 |
Correct |
2033 ms |
82432 KB |
Output is correct |