답안 #239565

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
239565 2020-06-16T11:49:41 Z jtnydv25 Construction of Highway (JOI18_construction) C++17
100 / 100
1266 ms 66148 KB
#include <bits/stdc++.h>
using namespace std;

#define ll long long
#define sd(x) scanf("%d", &(x))
#define pii pair<int, int>
#define F first
#define S second
#define all(c) ((c).begin()), ((c).end())
#define sz(x) ((int)(x).size())
#define ld long double

template<class T,class U>
ostream& operator<<(ostream& os,const pair<T,U>& p){
	os<<"("<<p.first<<", "<<p.second<<")";
	return os;
}

template<class T>
ostream& operator <<(ostream& os,const vector<T>& v){
	os<<"{";
	for(int i = 0;i < (int)v.size(); i++){
		if(i)os<<", ";
		os<<v[i];
	}
	os<<"}";
	return os;
}

#ifdef LOCAL
#define cerr cout
#else
#endif

#define TRACE

#ifdef TRACE
#define trace(...) __f(#__VA_ARGS__, __VA_ARGS__)
template <typename Arg1>
void __f(const char* name, Arg1&& arg1){
	cerr << name << " : " << arg1 << std::endl;
}
template <typename Arg1, typename... Args>
void __f(const char* names, Arg1&& arg1, Args&&... args){
	const char* comma = strchr(names + 1, ',');cerr.write(names, comma - names) << " : " << arg1<<" | ";__f(comma+1, args...);
}
#else
#define trace(...)
#endif

// 0-indexed
// O(n) precomputation, O(1) query lca
// O(n logn) precomputation, O(1) query kth ancestor
struct tree {
	int n, block_size, num_blocks;
	vector<vector<int>> adj, val;
	vector<int> num, floorlog;
	tree(){}
	tree(int n) : n(n), adj(n){ }
	void add_edge(int s, int t) {
		adj[s].push_back(t);
		adj[t].push_back(s);
	}
	vector<int> pos, tour, depth, pos_end;
	vector<vector<int>> table;
	int argmin(int i, int j) { return depth[i] < depth[j] ? i : j; }
	// O(n) preprocessing, O(1) lca query
	void rootify(int r) {
		pos.resize(n);
		pos_end.resize(n);
		// euler tour
		function<void (int,int,int)> dfs = [&](int u, int p, int d) {
			pos[u] = pos_end[u] = depth.size();
			tour.push_back(u);
			depth.push_back(d);
			for (int v: adj[u]) {
				if (v != p) {
					dfs(v, u, d+1);
					pos_end[u] = (int)depth.size();
					tour.push_back(u);
					depth.push_back(d);
				}
			}
		}; 

		dfs(r, r, 0);

		floorlog.resize(tour.size() + 1);

		for(int i = 0; (1 << i) <= tour.size(); i++)
			for(int j = (1 << i); j < (1 << (i + 1)) && j <= tour.size(); j++)
				floorlog[j] = i;

		int logn = floorlog[tour.size()];
		block_size = logn / 2 + 1;
		num_blocks = ((int)tour.size() - 1) / block_size + 1;
		table.resize(logn+1, vector<int>(num_blocks));
		num.resize(num_blocks);
		val.resize(block_size + 1, vector<int>(1 << block_size));

		for(int i = 0; i < tour.size(); i += block_size){
			int mn = i;
			int v = 0;
			int block = i / block_size;
			int j = i;
			for(; j < tour.size() && j < i + block_size; j++){
				mn = argmin(mn, j);
				if(j != i){
					v = 2 * v + (depth[j] == depth[j - 1] + 1);
				}
			}
			table[0][block] = mn;
			num[block] = v << (block_size - j + i);
		}

		for (int h = 1; (1 << h) <= num_blocks; ++h) 
			for (int i = 0; i + (1<<h) <= num_blocks; ++i)
				table[h][i] = argmin(table[h - 1][i], table[h - 1][i+(1<<(h - 1))]);

		for(int i = 0; i < (1 << block_size); i++){
			int prefix = 0, mn = 0, curr = 0;
			for(int j = 0; j < block_size; j++){
				prefix += 2 * (i >> (block_size - 1 - j) & 1) - 1;
				if(mn > prefix){
					mn = prefix;
					curr = j + 1;
				}
				val[j + 1][i >> (block_size - 1 - j)] = curr;
			}
		}
	}

	inline int same_block_lca(int block, int i, int j){
		if(i == j) return i + block * block_size;
		int l = j - i;
		int mask = (num[block] >> (block_size - j - 1)) & ((1 << l) - 1);
		return block * block_size + i + val[l][mask];
	}

	int lca(int a, int b){
		a = pos[a]; b = pos[b];
		if(a > b) swap(a, b);
		int block_a = a / block_size;
		int block_b = b / block_size;
		int ind_a = a - block_a * block_size;
		int ind_b = b - block_b * block_size;
		if(block_a == block_b) return tour[same_block_lca(block_a, ind_a, ind_b)];
		int ans = argmin(same_block_lca(block_a, ind_a, block_size - 1), same_block_lca(block_b, 0, ind_b));
		if(block_b > block_a + 1){
			int h = floorlog[block_b - block_a - 1];
			int t = argmin(table[h][block_a + 1], table[h][block_b- (1<<h)]);
			ans = argmin(ans, t);
		}
		return tour[ans];
	}

	inline int dist(int i, int j){
		return depth[pos[i]] + depth[pos[j]] - 2 * depth[pos[lca(i, j)]];
	}

	inline int getDepth(int u){
		return depth[pos[u]];
	}

	inline bool isAncestor(int a, int b){
		return pos[b] >= pos[a] && pos[b] <= pos_end[a];
	}

	inline bool isOn(int c, int a, int b){
		return isAncestor(lca(a, b), c) && (isAncestor(c, a) || isAncestor(c, b));
	}
	inline bool pathsIntersect(int a, int b, int c, int d){
		int lab = lca(a, b), lcd = lca(c, d);
		return isOn(lab, c, d) || isOn(lcd, a, b);
	}
    vector<vector<int>> chains, par;
    vector<int> sizes, st, en, chain_index, maxDepth;

	void straighten(int r){
		const int logN = 20;
		st.resize(n);
		en.resize(n);
		sizes.resize(n);
		maxDepth.resize(n);
		par.assign(logN, vector<int>(n, 0));
		int timer = 0;
		function<void(int, int, int)> dfs = [&](int s, int p, int d){
			par[0][s] = p;
			st[s] = ++timer;
			maxDepth[s] = d;
			for(int v : adj[s]) if(v != p){
				dfs(v, s, d + 1);
				maxDepth[s] = max(maxDepth[s], maxDepth[v]);
			}
			en[s] = timer;
			sizes[s] = en[s] - st[s] + 1;
		};
		dfs(r, r, 0);
		for(int i = 1; i < logN; i++)
			for(int j = 0; j < n; j++) par[i][j] = par[i - 1][par[i - 1][j]];
	}
    // for kth ancestor in O(1)
    void hld(int r){
		straighten(r);
        function<void(int, int, vector<int> &)> dfs = [&](int s, int p, vector<int> & chain){
			int bigc = -1;
			for(int v : adj[s]) if(v != p){
				if(bigc == -1 || maxDepth[v] > maxDepth[bigc]) bigc = v;
			}
			for(int v : adj[s]) if(v != p){
				if(v == bigc){
					chain.push_back(v);
					dfs(v, s, chain);
				} else{
					vector<int> new_chain = {v};
					dfs(v, s, new_chain);
				}
			}
			if(bigc == -1) chains.push_back(chain);
        };
		vector<int> init_chain = {r};
		dfs(r, r, init_chain);
		chain_index.resize(n);
		int ind = 0;
		for(auto & it : chains){
			reverse(all(it));
			int l = sz(it);
			int v = it.back();
			it.resize(2 * l);
			for(int i = 0; i < l; i++){
				chain_index[it[i]] = ind;
				v = par[0][v];
				it[l + i] = v;
			}
			ind++;
		}
    }
	inline int msb(int x){
		return 31 - __builtin_clz(x);
	}
	int kthAncestor(int x, int k){
		if(k==0) return x;
		int w = msb(k);
		int v = par[w][x];
		k -= (1 << w);
		int ind = chain_index[v];
		int pos = getDepth(chains[ind][0]) - getDepth(v);
		return chains[ind][pos + k];
	}
	void input(){
        for(int i = 1; i < n - 1; i++){
            int x, y;
            scanf("%d %d", &x, &y);
            add_edge(x, y);
        }
    }
};

const int N = 100005;
const int logN = 20;

int arrival[N], par[logN][N], depth[N], A[N], B[N], C[N];
int st[N], en[N], timer;

vector<int> children[N];
void dfs(int s, int d){
	depth[s] = d;
	st[s] = timer++;
	for(int v : children[s]) dfs(v, d + 1);
	en[s] = timer - 1;
}

// 0-indexed
template<class T>
struct segtree{
	int n;
	vector<T> t;
	T def;
	inline T combine(T a, T b){
		return arrival[a] > arrival[b] ? a : b;
	}

	segtree(vector<T> & inp, T def = T()) : n(sz(inp)), def(def){
		t.resize(2 * n, def);
		for(int i = 0; i < n; i++) t[n + i] = inp[i];
		for(int i = n - 1; i > 0; --i) t[i] = combine(t[i<<1], t[i<<1|1]);
	}

	void modify(int p, T value) { // modify a[p] = value
		// value = combine(value, t[p + n]); // if a[p] = combine(a[p], value)
		for (t[p += n] = value; p >>= 1; ) t[p] = combine(t[p<<1], t[p<<1|1]);
	}

	T query(int l, int r) {  // compute on interval [l, r]
    r++;
		T resl = def, resr = def;
		for (l += n, r += n; l < r; l >>= 1, r >>= 1) {
			if (l&1) resl = combine(resl, t[l++]);
			if (r&1) resr = combine(t[--r], resr);
		}
		return combine(resl, resr);
	}
};

ll bit[N];
void add(int x, int y){
	x++;
	for(; x < N; x += x & -x) bit[x] += y;
}

ll get(int x){
	x++;
	ll ret = 0;
	for(; x; x -= x & -x) ret += bit[x];
	return ret;
}

ll get(int l, int r){
	return get(r) - get(l - 1);
}

int getKth(int x, int k){
	for(int i = 0; i < logN; i++) if(k >> i & 1) x = par[i][x];
	return x;
}

int main(){
	int n; sd(n);
	vector<int> V(n);
	segtree<int> stree(V);
	map<int, int> compress; set<int> vals;
	tree T(n);
	for(int i = 0; i < n; i++){
		sd(C[i]);
		vals.insert(C[i]);
	}

	int pos = 0;
	for(int v : vals) compress[v] = pos++;

	for(int i = 0; i < n; i++) C[i] = compress[C[i]];

	for(int i = 1; i < n; i++){
		sd(A[i]); sd(B[i]);
		A[i]--; B[i]--;
		T.add_edge(A[i], B[i]);
		arrival[B[i]] = i;
		par[0][B[i]] = A[i];
		children[A[i]].push_back(B[i]);
	}
	dfs(0, 0);
	T.rootify(0);
	T.hld(0);

	for(int j = 1; j < logN; j++) for(int i = 0; i < n; i++) par[j][i] = par[j - 1][par[j - 1][i]];

	for(int i = 1; i < n; i++){
		int x = B[i];
		int curr = 1;
		vector<pii> vec;
		ll num = 0;
		while(curr <= depth[x]){
			int y = T.kthAncestor(x, curr);
			// int y = getKth(x, curr);
			int latestNode = stree.query(st[y], en[y]); // last added in x's subtree
			// maximum with the same value
			int lo = curr, hi = depth[x];
			while(lo < hi){
				int mid = (lo + hi + 1) >> 1;
				int node = T.kthAncestor(x, mid);
				if(stree.query(st[node], en[node]) == latestNode) lo = mid;
				else hi = mid - 1;
			}
			int v = C[latestNode], cnt = lo - curr + 1;

			vec.push_back({v, cnt}); // v comes cnt times

			num += cnt * (ll) get(0, v - 1); // the values below should be smaller than this

			add(v, cnt);
			curr = lo + 1;
		}
		for(auto it : vec) add(it.F, -it.S); // reinitialize bit to 0
		printf("%lld\n", num);
		
		stree.modify(st[x], x);
	}
}

Compilation message

construction.cpp: In member function 'void tree::rootify(int)':
construction.cpp:90:27: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
   for(int i = 0; (1 << i) <= tour.size(); i++)
                  ~~~~~~~~~^~~~~~~~~~~~~~
construction.cpp:91:50: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
    for(int j = (1 << i); j < (1 << (i + 1)) && j <= tour.size(); j++)
                                                ~~^~~~~~~~~~~~~~
construction.cpp:101:20: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
   for(int i = 0; i < tour.size(); i += block_size){
                  ~~^~~~~~~~~~~~~
construction.cpp:106:12: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
    for(; j < tour.size() && j < i + block_size; j++){
          ~~^~~~~~~~~~~~~
construction.cpp: In function 'int main()':
construction.cpp:5:20: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
 #define sd(x) scanf("%d", &(x))
               ~~~~~^~~~~~~~~~~~
construction.cpp:328:9: note: in expansion of macro 'sd'
  int n; sd(n);
         ^~
construction.cpp:5:20: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
 #define sd(x) scanf("%d", &(x))
               ~~~~~^~~~~~~~~~~~
construction.cpp:334:3: note: in expansion of macro 'sd'
   sd(C[i]);
   ^~
construction.cpp:5:20: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
 #define sd(x) scanf("%d", &(x))
               ~~~~~^~~~~~~~~~~~
construction.cpp:344:3: note: in expansion of macro 'sd'
   sd(A[i]); sd(B[i]);
   ^~
construction.cpp:5:20: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
 #define sd(x) scanf("%d", &(x))
               ~~~~~^~~~~~~~~~~~
construction.cpp:344:13: note: in expansion of macro 'sd'
   sd(A[i]); sd(B[i]);
             ^~
# 결과 실행 시간 메모리 Grader output
1 Correct 6 ms 2816 KB Output is correct
2 Correct 6 ms 2816 KB Output is correct
3 Correct 6 ms 2944 KB Output is correct
4 Correct 7 ms 2944 KB Output is correct
5 Correct 7 ms 3072 KB Output is correct
6 Correct 7 ms 3072 KB Output is correct
7 Correct 7 ms 3072 KB Output is correct
8 Correct 7 ms 3200 KB Output is correct
9 Correct 7 ms 3200 KB Output is correct
10 Correct 7 ms 3072 KB Output is correct
11 Correct 8 ms 3072 KB Output is correct
12 Correct 7 ms 3072 KB Output is correct
13 Correct 7 ms 3072 KB Output is correct
14 Correct 8 ms 3072 KB Output is correct
15 Correct 9 ms 3072 KB Output is correct
16 Correct 8 ms 3072 KB Output is correct
17 Correct 8 ms 3072 KB Output is correct
18 Correct 8 ms 3072 KB Output is correct
19 Correct 7 ms 3072 KB Output is correct
20 Correct 7 ms 3072 KB Output is correct
21 Correct 7 ms 3072 KB Output is correct
22 Correct 7 ms 3072 KB Output is correct
23 Correct 7 ms 2944 KB Output is correct
24 Correct 7 ms 2944 KB Output is correct
25 Correct 8 ms 3072 KB Output is correct
26 Correct 7 ms 3072 KB Output is correct
27 Correct 8 ms 3072 KB Output is correct
28 Correct 7 ms 3072 KB Output is correct
29 Correct 7 ms 3072 KB Output is correct
30 Correct 8 ms 3072 KB Output is correct
31 Correct 7 ms 2944 KB Output is correct
32 Correct 7 ms 3072 KB Output is correct
33 Correct 7 ms 3072 KB Output is correct
34 Correct 7 ms 3072 KB Output is correct
35 Correct 8 ms 3072 KB Output is correct
36 Correct 7 ms 3072 KB Output is correct
37 Correct 8 ms 3072 KB Output is correct
38 Correct 7 ms 2944 KB Output is correct
39 Correct 8 ms 3072 KB Output is correct
40 Correct 7 ms 3072 KB Output is correct
41 Correct 7 ms 3072 KB Output is correct
42 Correct 7 ms 3072 KB Output is correct
43 Correct 7 ms 3072 KB Output is correct
44 Correct 7 ms 3072 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 6 ms 2816 KB Output is correct
2 Correct 6 ms 2816 KB Output is correct
3 Correct 6 ms 2944 KB Output is correct
4 Correct 7 ms 2944 KB Output is correct
5 Correct 7 ms 3072 KB Output is correct
6 Correct 7 ms 3072 KB Output is correct
7 Correct 7 ms 3072 KB Output is correct
8 Correct 7 ms 3200 KB Output is correct
9 Correct 7 ms 3200 KB Output is correct
10 Correct 7 ms 3072 KB Output is correct
11 Correct 8 ms 3072 KB Output is correct
12 Correct 7 ms 3072 KB Output is correct
13 Correct 7 ms 3072 KB Output is correct
14 Correct 8 ms 3072 KB Output is correct
15 Correct 9 ms 3072 KB Output is correct
16 Correct 8 ms 3072 KB Output is correct
17 Correct 8 ms 3072 KB Output is correct
18 Correct 8 ms 3072 KB Output is correct
19 Correct 7 ms 3072 KB Output is correct
20 Correct 7 ms 3072 KB Output is correct
21 Correct 7 ms 3072 KB Output is correct
22 Correct 7 ms 3072 KB Output is correct
23 Correct 7 ms 2944 KB Output is correct
24 Correct 7 ms 2944 KB Output is correct
25 Correct 8 ms 3072 KB Output is correct
26 Correct 7 ms 3072 KB Output is correct
27 Correct 8 ms 3072 KB Output is correct
28 Correct 7 ms 3072 KB Output is correct
29 Correct 7 ms 3072 KB Output is correct
30 Correct 8 ms 3072 KB Output is correct
31 Correct 7 ms 2944 KB Output is correct
32 Correct 7 ms 3072 KB Output is correct
33 Correct 7 ms 3072 KB Output is correct
34 Correct 7 ms 3072 KB Output is correct
35 Correct 8 ms 3072 KB Output is correct
36 Correct 7 ms 3072 KB Output is correct
37 Correct 8 ms 3072 KB Output is correct
38 Correct 7 ms 2944 KB Output is correct
39 Correct 8 ms 3072 KB Output is correct
40 Correct 7 ms 3072 KB Output is correct
41 Correct 7 ms 3072 KB Output is correct
42 Correct 7 ms 3072 KB Output is correct
43 Correct 7 ms 3072 KB Output is correct
44 Correct 7 ms 3072 KB Output is correct
45 Correct 9 ms 3328 KB Output is correct
46 Correct 20 ms 4736 KB Output is correct
47 Correct 21 ms 4736 KB Output is correct
48 Correct 20 ms 4736 KB Output is correct
49 Correct 17 ms 5376 KB Output is correct
50 Correct 16 ms 5248 KB Output is correct
51 Correct 16 ms 5248 KB Output is correct
52 Correct 18 ms 4992 KB Output is correct
53 Correct 18 ms 4992 KB Output is correct
54 Correct 18 ms 4992 KB Output is correct
55 Correct 18 ms 5120 KB Output is correct
56 Correct 20 ms 4992 KB Output is correct
57 Correct 29 ms 4736 KB Output is correct
58 Correct 30 ms 4736 KB Output is correct
59 Correct 30 ms 4856 KB Output is correct
60 Correct 28 ms 4736 KB Output is correct
61 Correct 21 ms 4992 KB Output is correct
62 Correct 21 ms 5120 KB Output is correct
63 Correct 24 ms 5120 KB Output is correct
64 Correct 18 ms 4352 KB Output is correct
65 Correct 18 ms 4352 KB Output is correct
66 Correct 21 ms 4352 KB Output is correct
67 Correct 20 ms 4608 KB Output is correct
68 Correct 14 ms 4992 KB Output is correct
69 Correct 20 ms 4992 KB Output is correct
70 Correct 16 ms 4608 KB Output is correct
71 Correct 19 ms 4608 KB Output is correct
72 Correct 28 ms 4736 KB Output is correct
73 Correct 26 ms 4480 KB Output is correct
74 Correct 20 ms 4608 KB Output is correct
75 Correct 19 ms 4864 KB Output is correct
76 Correct 18 ms 4864 KB Output is correct
77 Correct 18 ms 4864 KB Output is correct
78 Correct 16 ms 4480 KB Output is correct
79 Correct 16 ms 4480 KB Output is correct
80 Correct 18 ms 4480 KB Output is correct
81 Correct 20 ms 4864 KB Output is correct
82 Correct 20 ms 4864 KB Output is correct
83 Correct 21 ms 4992 KB Output is correct
84 Correct 19 ms 4480 KB Output is correct
85 Correct 18 ms 4480 KB Output is correct
86 Correct 17 ms 4480 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 6 ms 2816 KB Output is correct
2 Correct 6 ms 2816 KB Output is correct
3 Correct 6 ms 2944 KB Output is correct
4 Correct 7 ms 2944 KB Output is correct
5 Correct 7 ms 3072 KB Output is correct
6 Correct 7 ms 3072 KB Output is correct
7 Correct 7 ms 3072 KB Output is correct
8 Correct 7 ms 3200 KB Output is correct
9 Correct 7 ms 3200 KB Output is correct
10 Correct 7 ms 3072 KB Output is correct
11 Correct 8 ms 3072 KB Output is correct
12 Correct 7 ms 3072 KB Output is correct
13 Correct 7 ms 3072 KB Output is correct
14 Correct 8 ms 3072 KB Output is correct
15 Correct 9 ms 3072 KB Output is correct
16 Correct 8 ms 3072 KB Output is correct
17 Correct 8 ms 3072 KB Output is correct
18 Correct 8 ms 3072 KB Output is correct
19 Correct 7 ms 3072 KB Output is correct
20 Correct 7 ms 3072 KB Output is correct
21 Correct 7 ms 3072 KB Output is correct
22 Correct 7 ms 3072 KB Output is correct
23 Correct 7 ms 2944 KB Output is correct
24 Correct 7 ms 2944 KB Output is correct
25 Correct 8 ms 3072 KB Output is correct
26 Correct 7 ms 3072 KB Output is correct
27 Correct 8 ms 3072 KB Output is correct
28 Correct 7 ms 3072 KB Output is correct
29 Correct 7 ms 3072 KB Output is correct
30 Correct 8 ms 3072 KB Output is correct
31 Correct 7 ms 2944 KB Output is correct
32 Correct 7 ms 3072 KB Output is correct
33 Correct 7 ms 3072 KB Output is correct
34 Correct 7 ms 3072 KB Output is correct
35 Correct 8 ms 3072 KB Output is correct
36 Correct 7 ms 3072 KB Output is correct
37 Correct 8 ms 3072 KB Output is correct
38 Correct 7 ms 2944 KB Output is correct
39 Correct 8 ms 3072 KB Output is correct
40 Correct 7 ms 3072 KB Output is correct
41 Correct 7 ms 3072 KB Output is correct
42 Correct 7 ms 3072 KB Output is correct
43 Correct 7 ms 3072 KB Output is correct
44 Correct 7 ms 3072 KB Output is correct
45 Correct 9 ms 3328 KB Output is correct
46 Correct 20 ms 4736 KB Output is correct
47 Correct 21 ms 4736 KB Output is correct
48 Correct 20 ms 4736 KB Output is correct
49 Correct 17 ms 5376 KB Output is correct
50 Correct 16 ms 5248 KB Output is correct
51 Correct 16 ms 5248 KB Output is correct
52 Correct 18 ms 4992 KB Output is correct
53 Correct 18 ms 4992 KB Output is correct
54 Correct 18 ms 4992 KB Output is correct
55 Correct 18 ms 5120 KB Output is correct
56 Correct 20 ms 4992 KB Output is correct
57 Correct 29 ms 4736 KB Output is correct
58 Correct 30 ms 4736 KB Output is correct
59 Correct 30 ms 4856 KB Output is correct
60 Correct 28 ms 4736 KB Output is correct
61 Correct 21 ms 4992 KB Output is correct
62 Correct 21 ms 5120 KB Output is correct
63 Correct 24 ms 5120 KB Output is correct
64 Correct 18 ms 4352 KB Output is correct
65 Correct 18 ms 4352 KB Output is correct
66 Correct 21 ms 4352 KB Output is correct
67 Correct 20 ms 4608 KB Output is correct
68 Correct 14 ms 4992 KB Output is correct
69 Correct 20 ms 4992 KB Output is correct
70 Correct 16 ms 4608 KB Output is correct
71 Correct 19 ms 4608 KB Output is correct
72 Correct 28 ms 4736 KB Output is correct
73 Correct 26 ms 4480 KB Output is correct
74 Correct 20 ms 4608 KB Output is correct
75 Correct 19 ms 4864 KB Output is correct
76 Correct 18 ms 4864 KB Output is correct
77 Correct 18 ms 4864 KB Output is correct
78 Correct 16 ms 4480 KB Output is correct
79 Correct 16 ms 4480 KB Output is correct
80 Correct 18 ms 4480 KB Output is correct
81 Correct 20 ms 4864 KB Output is correct
82 Correct 20 ms 4864 KB Output is correct
83 Correct 21 ms 4992 KB Output is correct
84 Correct 19 ms 4480 KB Output is correct
85 Correct 18 ms 4480 KB Output is correct
86 Correct 17 ms 4480 KB Output is correct
87 Correct 48 ms 7808 KB Output is correct
88 Correct 152 ms 17584 KB Output is correct
89 Correct 737 ms 51936 KB Output is correct
90 Correct 765 ms 52016 KB Output is correct
91 Correct 931 ms 51912 KB Output is correct
92 Correct 438 ms 66020 KB Output is correct
93 Correct 474 ms 66148 KB Output is correct
94 Correct 493 ms 66148 KB Output is correct
95 Correct 511 ms 59488 KB Output is correct
96 Correct 540 ms 59872 KB Output is correct
97 Correct 548 ms 59744 KB Output is correct
98 Correct 517 ms 59872 KB Output is correct
99 Correct 636 ms 59360 KB Output is correct
100 Correct 1266 ms 51216 KB Output is correct
101 Correct 1220 ms 51728 KB Output is correct
102 Correct 1225 ms 51600 KB Output is correct
103 Correct 1216 ms 51600 KB Output is correct
104 Correct 741 ms 59440 KB Output is correct
105 Correct 745 ms 59488 KB Output is correct
106 Correct 757 ms 59488 KB Output is correct
107 Correct 761 ms 40928 KB Output is correct
108 Correct 656 ms 41184 KB Output is correct
109 Correct 745 ms 44300 KB Output is correct
110 Correct 333 ms 55268 KB Output is correct
111 Correct 604 ms 59488 KB Output is correct
112 Correct 418 ms 49120 KB Output is correct
113 Correct 621 ms 48608 KB Output is correct
114 Correct 1187 ms 51344 KB Output is correct
115 Correct 1105 ms 40928 KB Output is correct
116 Correct 627 ms 48608 KB Output is correct
117 Correct 636 ms 55052 KB Output is correct
118 Correct 577 ms 53864 KB Output is correct
119 Correct 569 ms 53004 KB Output is correct
120 Correct 646 ms 45024 KB Output is correct
121 Correct 552 ms 43744 KB Output is correct
122 Correct 470 ms 43200 KB Output is correct
123 Correct 756 ms 55184 KB Output is correct
124 Correct 671 ms 53772 KB Output is correct
125 Correct 684 ms 53060 KB Output is correct
126 Correct 619 ms 45152 KB Output is correct
127 Correct 588 ms 44000 KB Output is correct
128 Correct 585 ms 43104 KB Output is correct