#include <bits/stdc++.h>
#include <cassert>
#include <string>
#include "vision.h"
using namespace std;
/// ---------------------------------------------------------------------------------
int res[1000010] , f[210][210];
int sau_pr[510] , sau_sec[510] , xor_pr[510] , xor_sec[510];
int convert (int x , int y , int n , int m){
return (x - 1) * m + y - 1;
}
int in_matrix (int i , int j , int n , int m){
return (i > 0 && j > 0 && i <= n && j <= m);
}
void construct_network(int n, int m, int k) {
int i , j , dif , dif2 , sum , sum2 , princ , sec , rez1 , rez2 , cod_diag , p1 , p2;
vector <int> v , w , x;
for (dif = 1 - m ; dif <= n - 1 ; dif++){
v.clear();
for (i = 1 ; i <= n ; i++){
/// i - j = dif
j = i - dif;
if (in_matrix(i , j , n , m)){ /// e o pozitie valida de pe diagonala asta
v.push_back(convert(i , j , n , m));
}
}
/// in v ai elem de pe diag
cod_diag = dif - (1 - m);
sau_pr[cod_diag] = add_or(v);
xor_pr[cod_diag] = add_xor(v);
}
w.clear();
for (dif = 1 - m ; dif <= n - 1 ; dif++){
v.clear();
x.clear();
if (dif + k > n - 1)
continue;
for (dif2 = dif ; dif2 <= n - 1 && dif2 <= dif + k ; dif2++){
/// vad intervalul dif , dif2
v.push_back(sau_pr[dif2 - (1 - m)]);
x.push_back(xor_pr[dif2 - (1 - m)]);
}
p1 = add_or(v);
p2 = add_xor(x);
v.clear();
v.push_back(p1);
v.push_back(p2);
w.push_back(add_xor(v));
}
princ = add_or(w);
/// pe princ trb sa fie 1
/// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
for (sum = n + m ; sum >= 2 ; sum--){
v.clear();
for (i = 1 ; i <= n ; i++){
/// i + j = sum
j = - (i - sum);
if (in_matrix(i , j , n , m)){ /// e o pozitie valida de pe diagonala asta
v.push_back(convert(i , j , n , m));
}
}
/// in v ai elem de pe diag
cod_diag = sum;
sau_sec[cod_diag] = add_or(v);
xor_sec[cod_diag] = add_xor(v);
}
w.clear();
for (sum = n + m ; sum >= 2 ; sum--){
v.clear();
x.clear();
for (sum2 = sum ; sum2 >= 2 && sum - sum2 <= k ; sum2--){
/// vad intervalul sum , sum2
v.push_back(sau_sec[sum2]);
x.push_back(xor_sec[sum2]);
}
p1 = add_or(v);
p2 = add_xor(x);
v.clear();
v.push_back(p1);
v.push_back(p2);
w.push_back(add_xor(v));
}
sec = add_or(w);
v.clear();
v.push_back(princ);
v.push_back(sec);
rez1 = add_and(v);
if (k == 1)
return;
/// ----------------------------------------------------------------------------
for (dif = 1 - m ; dif <= n - 1 ; dif++){
v.clear();
for (i = 1 ; i <= n ; i++){
/// i - j = dif
j = i - dif;
if (in_matrix(i , j , n , m)){ /// e o pozitie valida de pe diagonala asta
v.push_back(convert(i , j , n , m));
}
}
/// in v ai elem de pe diag
cod_diag = dif - (1 - m);
sau_pr[cod_diag] = add_or(v);
xor_pr[cod_diag] = add_xor(v);
}
w.clear();
for (dif = 1 - m ; dif <= n - 1 ; dif++){
v.clear();
x.clear();
for (dif2 = dif ; dif2 <= n - 1 && dif2 < dif + k ; dif2++){
/// vad intervalul dif , dif2
v.push_back(sau_pr[dif2 - (1 - m)]);
x.push_back(xor_pr[dif2 - (1 - m)]);
}
p1 = add_or(v);
p2 = add_xor(x);
v.clear();
v.push_back(p1);
v.push_back(p2);
w.push_back(add_xor(v));
}
princ = add_or(w);
/// pe princ trb sa fie 1
/// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
for (sum = n + m ; sum >= 2 ; sum--){
v.clear();
for (i = 1 ; i <= n ; i++){
/// i + j = sum
j = - (i - sum);
if (in_matrix(i , j , n , m)){ /// e o pozitie valida de pe diagonala asta
v.push_back(convert(i , j , n , m));
}
}
/// in v ai elem de pe diag
cod_diag = sum;
sau_sec[cod_diag] = add_or(v);
xor_sec[cod_diag] = add_xor(v);
}
w.clear();
for (sum = n + m ; sum >= 2 ; sum--){
v.clear();
x.clear();
for (sum2 = sum ; sum2 >= 2 && sum - sum2 < k ; sum2--){
/// vad intervalul sum , sum2
v.push_back(sau_sec[sum2]);
x.push_back(xor_sec[sum2]);
}
p1 = add_or(v);
p2 = add_xor(x);
v.clear();
v.push_back(p1);
v.push_back(p2);
w.push_back(add_xor(v));
}
sec = add_or(w);
v.clear();
v.push_back(princ);
v.push_back(sec);
rez2 = add_and(v);
rez2 = not(rez2);
v.clear();
v.push_back(rez1);
v.push_back(rez2);
add_and(v);
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
5 ms |
384 KB |
Output is correct |
2 |
Incorrect |
5 ms |
384 KB |
on inputs (0, 0), (0, 1), expected 0, but computed 1 |
3 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
5 ms |
384 KB |
Output is correct |
2 |
Incorrect |
5 ms |
384 KB |
on inputs (0, 0), (0, 1), expected 0, but computed 1 |
3 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
5 ms |
384 KB |
Output is correct |
2 |
Incorrect |
5 ms |
384 KB |
on inputs (0, 0), (0, 1), expected 0, but computed 1 |
3 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
5 ms |
384 KB |
Output is correct |
2 |
Incorrect |
5 ms |
384 KB |
on inputs (0, 0), (0, 1), expected 0, but computed 1 |
3 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
5 ms |
512 KB |
Output is correct |
2 |
Incorrect |
17 ms |
1536 KB |
on inputs (0, 0), (0, 1), expected 0, but computed 1 |
3 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
5 ms |
384 KB |
Output is correct |
2 |
Incorrect |
4 ms |
384 KB |
on inputs (0, 0), (0, 1), expected 0, but computed 1 |
3 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
31 ms |
2172 KB |
Output is correct |
2 |
Correct |
4 ms |
384 KB |
Output is correct |
3 |
Correct |
7 ms |
512 KB |
Output is correct |
4 |
Correct |
8 ms |
640 KB |
Output is correct |
5 |
Correct |
6 ms |
512 KB |
Output is correct |
6 |
Correct |
6 ms |
512 KB |
Output is correct |
7 |
Correct |
19 ms |
1280 KB |
Output is correct |
8 |
Correct |
14 ms |
1280 KB |
Output is correct |
9 |
Correct |
25 ms |
2176 KB |
Output is correct |
10 |
Correct |
5 ms |
384 KB |
Output is correct |
11 |
Correct |
5 ms |
384 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
5 ms |
384 KB |
Output is correct |
2 |
Incorrect |
5 ms |
384 KB |
on inputs (0, 0), (0, 1), expected 0, but computed 1 |
3 |
Halted |
0 ms |
0 KB |
- |