# | Time | Username | Problem | Language | Result | Execution time | Memory |
---|---|---|---|---|---|---|---|
237187 | kartel | Automobil (COCI17_automobil) | C++14 | 38 ms | 16000 KiB |
This submission is migrated from previous version of oj.uz, which used different machine for grading. This submission may have different result if resubmitted.
#include <bits/stdc++.h>
//#include <ext/pb_ds/assoc_container.hpp>
//#include <ext/pb_ds/tree_policy.hpp>
#define in(x) freopen(x, "r", stdin)
#define out(x) freopen(x, "w", stdout)
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("-O3")
#define F first
#define S second
#define pb push_back
#define N +1000500
#define MaxS N * N
#define M ll(1e9 + 7)
#define sz(x) (int)x.size()
#define re return
#define oo ll(1e18)
#define el '\n'
#define pii pair <int, int>
using namespace std;
//using namespace __gnu_pbds;
//typedef tree <int, null_type, less_equal <int> , rb_tree_tag, tree_order_statistics_node_update> ordered_set;
typedef long long ll;
typedef long double ld;
ll r[N], c[N], ans, n, m, q, x, y, i, j;
char cmd;
ll mult(ll x, ll y) {return (x * y) % M;}
ll sum(ll x, ll y) {return (x + y) % M;}
ll mi(ll x, ll y) {return (x - y + M) % M;}
ll bp(ll x, ll y)
{
if (y == 0) return 1ll;
if (y % 2) return mult(x, bp(x, y - 1));
ll a = bp(x, y / 2);
return mult(a, a);
}
int main()
{
srand(time(0));
ios_base::sync_with_stdio(0);
iostream::sync_with_stdio(0);
ios::sync_with_stdio(0);
cin.tie(NULL);
cout.tie(NULL);
// in("input.txt");
// out("output.txt");
cin >> n >> m >> q;
ans = 0;
for (i = 1; i <= n; i++)
{
r[i] = 1;
}
for (i = 1; i <= m; i++)
{
c[i] = 1;
}
while (q--)
{
cin >> cmd >> x >> y;
if (cmd == 'R')
r[x] = mult(r[x], y);
else
c[x] = mult(c[x], y);
}
ll sumc = 0;
for (i = 1; i <= m; i++) sumc = sum(sumc, c[i]);
ll sumcc = 0;
for (i = 2; i <= m; i++) sumcc = sum(sumcc, mult(c[i], i - 1));
for (i = 1; i <= n; i++)
ans = sum(ans, mult(r[i], sum(mult(sumc, sum(mult(i - 1, m), 1)), sumcc)));
cout << ans << el;
}
// x ^ 2 + y ^ 2 = 1
// x * a_i + y * b_i
// a_i = -b_i * tan(alpha)
// a_i / -b_i = tan(alpha)
// alpha = atan(a_i / (-b_i))
# | Verdict | Execution time | Memory | Grader output |
---|---|---|---|---|
Fetching results... |