Submission #236901

# Submission time Handle Problem Language Result Execution time Memory
236901 2020-06-03T17:50:30 Z rajarshi_basu Fire (JOI20_ho_t5) C++14
14 / 100
1000 ms 83916 KB
#include <stdio.h>     
#include <stdlib.h>    
#include <iostream>
#include <vector>
#include <algorithm>
#include <fstream>
#include <queue>
#include <deque>
#include <iomanip>
#include <cmath>
#include <set>
#include <stack>
#include <map>
#include <unordered_map>
 
#define FOR(i,n) for(int i=0;i<n;i++)
#define FORE(i,a,b) for(int i=a;i<=b;i++)
#define ll long long 
#define ld long double
#define int ll
//#define int short
#define vi vector<int>
#define pb push_back
#define ff first
#define ss second
#define ii pair<int,int>
#define iii pair<int,ii>
#define iiii pair<iii,int>
#define pll pair<ll,ll>
#define plll pair<ll,pll>
//#define mp make_pair
#define vv vector
#define endl '\n'
 
using namespace std;

const int MAXN = 200*1000 + 5;
const int MAXT = 263*1000;

struct SegmentTree{
	int st[2*MAXT];
	void update(int node,int ss,int se,int pos,int val){
		if(pos < ss or se < pos)return;
		if(ss == se){
			st[node] = val;
			return;
		}
		int mid = (ss+se)/2;
		update(node*2+1,ss,mid,pos,val);
		update(node*2+2,mid+1,se,pos,val);
		st[node] = st[node*2+1]+st[node*2+2];
	}
	int get(int node,int ss,int se,int l,int r){
		if(l > se or r < ss)return 0;
		if(l <= ss and se <= r)return st[node];
		int mid = (ss+se)/2;
		return get(node*2+1,ss,mid,l,r)+get(node*2+2,mid+1,se,l,r);
	}
};


/*
stage 1: still growing towards left. : sum of elements*time
stage 2(a): end growing and stabilise: sum of elementrange.
stage 2(b): grow and decay, hence no change: sum of element range 
stage 3: just decay: sum(elementrange) - sum(element size)*time
stage 4: dead. We dont really need to keep track of this.

// lets see how we can better the implementation. We have a period when there is a growth
and then we have a period where there is a decay. Stage 2(a/b) can be calculated in terms of those. 
stage 4 is bleh, just kick it out. 
growth_end(i) = time when growth stops. 
decay_start(i) = time when decay starts. 
dead(i) = when we dont need to consider it. 

for every viable i, ans is Arr[i]*(min(growth_end(i),t) - max(0,t-decay_start(i)))
=> Arr[i]*(min(growth_end(i),t)) - Arr[i]*(max(0,t-decay_start(i)));
*/
int D = 0;
int n;
struct Event{
	// =1 means growth_end(i) has been reached, and it wont grow anymore;
	// =2 means decay has been started.
	// type2 = ded.
	int type; 
	int time;
	int item;
	int data; // depends on the event.
	Event(int a,int b,int c,int d=0){
		type = a;
		time = b;
		item = c;
		data = d;
	} 
};	


int prev_greater[MAXN];
int next_greater[MAXN];
int arr[MAXN];

void generateGreaters(int n){
	stack<int> st1;
	stack<int> st2;
	FOR(i,n){
		while(!st1.empty() and arr[st1.top()] < arr[i])st1.pop();
		if(st1.empty())prev_greater[i] = -3*n;
		else prev_greater[i] = st1.top();
		st1.push(i);

		while(!st2.empty() and arr[st2.top()] <= arr[n-i-1])st2.pop();
		if(st2.empty())next_greater[n-i-1] = n;
		else next_greater[n-i-1] = st2.top();
		st2.push(n-i-1);
	}
}

vv<Event> eventlist;
void formEventList(int n){
	FOR(i,n){
		int delta1 = next_greater[i] - i;
		eventlist.pb(Event(1,delta1,i));

		int delta2 = i - prev_greater[i];
		delta2--;
		eventlist.pb(Event(2,delta2,i));

		eventlist.pb(Event(3,delta2+delta1,i));
	}
	sort(eventlist.begin(), eventlist.end(),[&](Event e1,Event e2){
		if(e1.time == e2.time)return e1.type < e2.type;
		return e1.time < e2.time;
	});
}

SegmentTree segtree_expansion;// for expansion
SegmentTree segtree_stable;// when no expansion
SegmentTree segtree_decay;// when there is decay
SegmentTree segtree_decay_helper;

bool growthState[MAXN];
bool stableState[MAXN];
bool decayState[MAXN];
bool deadState[MAXN];

const int LOGN = 20;
int sparseTable[LOGN][MAXN];

void generateSparseTable(){
	FOR(i,n)sparseTable[0][i] = prev_greater[i];
	FORE(i,1,LOGN-1){
		FOR(j,n){
			int p = sparseTable[i-1][j];
			if(p < 0 )sparseTable[i][j] = p;
			else sparseTable[i][j] = sparseTable[i-1][p];
		}
	}
}

ll getAnsForPrefix(int x,int t){
	ll cost = 0;
	int xcp = x;

	for(int goUp = LOGN-1;goUp >= 0;goUp--){
		if(sparseTable[goUp][x] >= 0 and xcp-sparseTable[goUp][x] <= t){
			x = sparseTable[goUp][x];
		}
	}
	//x = prev_greater[x];
	//while(x >= 0 and xcp-prev_greater[x]<=t)x = prev_greater[x];


	if(D)cout << "PREFIX: " << xcp << " " << x << endl;
	cost += segtree_expansion.get(0,0,n,0,x)*(t+1);// the expansion
	if(D)cout << "cost1 : " << cost << endl;
	cost += segtree_stable.get(0,0,n,0,x);
	if(D)cout << "cost2 : " << cost << endl;
	cost -= segtree_decay.get(0,0,n,0,x)*(t) - segtree_decay_helper.get(0,0,n,0,x);
	if(D)cout << "cost3 : " << cost << endl;
	// now fix for the right most point;
	
	cost -= (arr[x])*(min(max(0LL,t-(xcp-x)),(next_greater[x]-xcp-1)));
	if(D)cout << "cost4 : " << cost << endl;
	if(D)cout << endl;
	return cost;
}


signed main(){
	ios_base::sync_with_stdio(0);
	cin.tie(0);

	int q;
	cin >> n >> q;
	FOR(i,n)cin >> arr[i];
	iiii queries[q];
	FOR(i,q){
		int a,b,c;
		cin >> a >> b >> c;
		b--;c--;
		queries[i] = {{a,{b,c}},i};
	}
	sort(queries,queries+q);

	generateGreaters(n);
	formEventList(n);
	generateSparseTable();

	reverse(eventlist.begin(), eventlist.end());
	//
	if(D)cout << "OUTPUT DATA : " << endl;
	FOR(i,n)if(D)cout << next_greater[i] << " ";if(D)cout << endl;
	FOR(i,n)if(D)cout << prev_greater[i] << " ";if(D)cout << endl;
	if(D)cout << "EVENTS:" << endl;
	for(auto e : eventlist){
		if(D)cout << e.type << " " << e.item << " " << e.time << endl;
	}

	if(D)cout << "ACTUAL OUTPUT " << endl;
	FOR(i,n)growthState[i] = 1;
	FOR(i,n)segtree_expansion.update(0,0,n,i,arr[i]);
	ll ans[q];
	for(auto f : queries){
		auto e = f.ff;
		int t = e.ff;
		int a = e.ss.ff;int b = e.ss.ss;
		if(D)cout << "QUERY: " << t << " " << a << " " << b << endl;
		// at time t, in range a to b;
		while(!eventlist.empty() and eventlist.back().time <= t){
			// we have got more events to process yay !!
			Event e = eventlist.back();eventlist.pop_back();
			int i = e.item;
			if(e.type == 1){
				segtree_expansion.update(0,0,n,i,0);
				segtree_stable.update(0,0,n,i,arr[i]*e.time);
				growthState[i] = 0;
				stableState[i] = 1;

			}else if(e.type == 2){
				segtree_decay.update(0,0,n,i,arr[i]);
				segtree_decay_helper.update(0,0,n,i,arr[i]*e.time);
				decayState[i] = 1;
			}else{
				// the first two are redundant
				//segtree_expansion.update(0,0,n,e.item,0);
				segtree_stable.update(0,0,n,i,0);
				segtree_decay_helper.update(0,0,n,i,0);
				segtree_decay.update(0,0,n,i,0);
				decayState[i] = 0;growthState[i] =0; growthState[i] = 0;
				deadState[i] = 1;
			}
		}

		ll cost = getAnsForPrefix(b,t);
		if(a != 0)cost -= getAnsForPrefix(a-1,t);
		ans[f.ss] = cost;
		//if(D)cout << cost << endl;
	}

	if(D)cout << endl;

	FOR(i,q){
		cout << ans[i] << endl;
	}

	return 0;
}

Compilation message

ho_t5.cpp: In function 'int main()':
ho_t5.cpp:16:18: warning: this 'for' clause does not guard... [-Wmisleading-indentation]
 #define FOR(i,n) for(int i=0;i<n;i++)
                  ^
ho_t5.cpp:212:2: note: in expansion of macro 'FOR'
  FOR(i,n)if(D)cout << next_greater[i] << " ";if(D)cout << endl;
  ^~~
ho_t5.cpp:212:46: note: ...this statement, but the latter is misleadingly indented as if it were guarded by the 'for'
  FOR(i,n)if(D)cout << next_greater[i] << " ";if(D)cout << endl;
                                              ^~
ho_t5.cpp:16:18: warning: this 'for' clause does not guard... [-Wmisleading-indentation]
 #define FOR(i,n) for(int i=0;i<n;i++)
                  ^
ho_t5.cpp:213:2: note: in expansion of macro 'FOR'
  FOR(i,n)if(D)cout << prev_greater[i] << " ";if(D)cout << endl;
  ^~~
ho_t5.cpp:213:46: note: ...this statement, but the latter is misleadingly indented as if it were guarded by the 'for'
  FOR(i,n)if(D)cout << prev_greater[i] << " ";if(D)cout << endl;
                                              ^~
# Verdict Execution time Memory Grader output
1 Correct 5 ms 512 KB Output is correct
2 Correct 6 ms 640 KB Output is correct
3 Correct 6 ms 640 KB Output is correct
4 Correct 6 ms 768 KB Output is correct
5 Correct 5 ms 640 KB Output is correct
6 Correct 5 ms 640 KB Output is correct
7 Correct 5 ms 640 KB Output is correct
8 Correct 5 ms 640 KB Output is correct
9 Correct 5 ms 640 KB Output is correct
10 Correct 6 ms 640 KB Output is correct
11 Correct 5 ms 640 KB Output is correct
12 Correct 5 ms 640 KB Output is correct
13 Correct 6 ms 640 KB Output is correct
14 Correct 6 ms 640 KB Output is correct
15 Correct 5 ms 640 KB Output is correct
16 Correct 5 ms 640 KB Output is correct
17 Correct 5 ms 640 KB Output is correct
18 Correct 6 ms 640 KB Output is correct
19 Correct 6 ms 640 KB Output is correct
20 Correct 5 ms 664 KB Output is correct
21 Correct 5 ms 640 KB Output is correct
22 Correct 6 ms 640 KB Output is correct
23 Correct 5 ms 640 KB Output is correct
24 Correct 5 ms 640 KB Output is correct
25 Correct 5 ms 640 KB Output is correct
26 Correct 6 ms 640 KB Output is correct
27 Correct 6 ms 640 KB Output is correct
28 Correct 5 ms 640 KB Output is correct
29 Correct 5 ms 616 KB Output is correct
30 Correct 6 ms 640 KB Output is correct
31 Correct 5 ms 640 KB Output is correct
32 Correct 5 ms 640 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 512 KB Output is correct
2 Correct 799 ms 82972 KB Output is correct
3 Correct 777 ms 82084 KB Output is correct
4 Correct 763 ms 82692 KB Output is correct
5 Correct 804 ms 83576 KB Output is correct
6 Correct 818 ms 82976 KB Output is correct
7 Correct 763 ms 83204 KB Output is correct
8 Correct 753 ms 83916 KB Output is correct
9 Correct 769 ms 83356 KB Output is correct
10 Correct 762 ms 81956 KB Output is correct
11 Correct 743 ms 83740 KB Output is correct
12 Correct 740 ms 81692 KB Output is correct
13 Correct 750 ms 83356 KB Output is correct
14 Correct 740 ms 83232 KB Output is correct
15 Correct 747 ms 83484 KB Output is correct
16 Correct 760 ms 82980 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 512 KB Output is correct
2 Correct 826 ms 81960 KB Output is correct
3 Correct 760 ms 80664 KB Output is correct
4 Correct 807 ms 83104 KB Output is correct
5 Correct 820 ms 81440 KB Output is correct
6 Correct 773 ms 82200 KB Output is correct
7 Correct 858 ms 82296 KB Output is correct
8 Correct 799 ms 81524 KB Output is correct
9 Correct 783 ms 80924 KB Output is correct
10 Correct 853 ms 80368 KB Output is correct
11 Correct 796 ms 82972 KB Output is correct
12 Correct 808 ms 82304 KB Output is correct
13 Correct 897 ms 82536 KB Output is correct
14 Correct 788 ms 81348 KB Output is correct
15 Correct 799 ms 83004 KB Output is correct
16 Correct 798 ms 82716 KB Output is correct
# Verdict Execution time Memory Grader output
1 Execution timed out 1102 ms 79352 KB Time limit exceeded
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 5 ms 512 KB Output is correct
2 Correct 6 ms 640 KB Output is correct
3 Correct 6 ms 640 KB Output is correct
4 Correct 6 ms 768 KB Output is correct
5 Correct 5 ms 640 KB Output is correct
6 Correct 5 ms 640 KB Output is correct
7 Correct 5 ms 640 KB Output is correct
8 Correct 5 ms 640 KB Output is correct
9 Correct 5 ms 640 KB Output is correct
10 Correct 6 ms 640 KB Output is correct
11 Correct 5 ms 640 KB Output is correct
12 Correct 5 ms 640 KB Output is correct
13 Correct 6 ms 640 KB Output is correct
14 Correct 6 ms 640 KB Output is correct
15 Correct 5 ms 640 KB Output is correct
16 Correct 5 ms 640 KB Output is correct
17 Correct 5 ms 640 KB Output is correct
18 Correct 6 ms 640 KB Output is correct
19 Correct 6 ms 640 KB Output is correct
20 Correct 5 ms 664 KB Output is correct
21 Correct 5 ms 640 KB Output is correct
22 Correct 6 ms 640 KB Output is correct
23 Correct 5 ms 640 KB Output is correct
24 Correct 5 ms 640 KB Output is correct
25 Correct 5 ms 640 KB Output is correct
26 Correct 6 ms 640 KB Output is correct
27 Correct 6 ms 640 KB Output is correct
28 Correct 5 ms 640 KB Output is correct
29 Correct 5 ms 616 KB Output is correct
30 Correct 6 ms 640 KB Output is correct
31 Correct 5 ms 640 KB Output is correct
32 Correct 5 ms 640 KB Output is correct
33 Correct 846 ms 82460 KB Output is correct
34 Correct 848 ms 83288 KB Output is correct
35 Correct 850 ms 83704 KB Output is correct
36 Correct 805 ms 82332 KB Output is correct
37 Correct 784 ms 82228 KB Output is correct
38 Correct 820 ms 83108 KB Output is correct
39 Correct 837 ms 82896 KB Output is correct
40 Correct 858 ms 81816 KB Output is correct
41 Correct 865 ms 83616 KB Output is correct
42 Correct 839 ms 82296 KB Output is correct
43 Correct 854 ms 83740 KB Output is correct
44 Correct 856 ms 83868 KB Output is correct
45 Correct 820 ms 81436 KB Output is correct
46 Correct 857 ms 83228 KB Output is correct
47 Correct 828 ms 82280 KB Output is correct
48 Correct 806 ms 81464 KB Output is correct
49 Correct 830 ms 82460 KB Output is correct
50 Correct 842 ms 83872 KB Output is correct
51 Correct 868 ms 83612 KB Output is correct
52 Correct 819 ms 82476 KB Output is correct
53 Correct 899 ms 82460 KB Output is correct
54 Correct 897 ms 81564 KB Output is correct
55 Correct 897 ms 82588 KB Output is correct
56 Correct 886 ms 82952 KB Output is correct
57 Correct 916 ms 82204 KB Output is correct
58 Correct 965 ms 83440 KB Output is correct
59 Correct 799 ms 82972 KB Output is correct
60 Correct 777 ms 82084 KB Output is correct
61 Correct 763 ms 82692 KB Output is correct
62 Correct 804 ms 83576 KB Output is correct
63 Correct 818 ms 82976 KB Output is correct
64 Correct 763 ms 83204 KB Output is correct
65 Correct 753 ms 83916 KB Output is correct
66 Correct 769 ms 83356 KB Output is correct
67 Correct 762 ms 81956 KB Output is correct
68 Correct 743 ms 83740 KB Output is correct
69 Correct 740 ms 81692 KB Output is correct
70 Correct 750 ms 83356 KB Output is correct
71 Correct 740 ms 83232 KB Output is correct
72 Correct 747 ms 83484 KB Output is correct
73 Correct 760 ms 82980 KB Output is correct
74 Correct 826 ms 81960 KB Output is correct
75 Correct 760 ms 80664 KB Output is correct
76 Correct 807 ms 83104 KB Output is correct
77 Correct 820 ms 81440 KB Output is correct
78 Correct 773 ms 82200 KB Output is correct
79 Correct 858 ms 82296 KB Output is correct
80 Correct 799 ms 81524 KB Output is correct
81 Correct 783 ms 80924 KB Output is correct
82 Correct 853 ms 80368 KB Output is correct
83 Correct 796 ms 82972 KB Output is correct
84 Correct 808 ms 82304 KB Output is correct
85 Correct 897 ms 82536 KB Output is correct
86 Correct 788 ms 81348 KB Output is correct
87 Correct 799 ms 83004 KB Output is correct
88 Correct 798 ms 82716 KB Output is correct
89 Execution timed out 1102 ms 79352 KB Time limit exceeded
90 Halted 0 ms 0 KB -